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Abstract: In order to study discrete nonconservative system, Hamilton’ s principle within fractional difference
operators of Riemann-Liouville type is given. Discrete Lagrange equations of the nonconservative system as well as
the nonconservative system with dynamic constraint are established within fractional difference operators of Riemann-
Liouville type from the view of time scales. Firstly, time scale calculus and fractional calculus are reviewed.
Secondly, with the help of the properties of time scale calculus, discrete Lagrange equation of the nonconservative
system within fractional difference operators of Riemann-Liouville type is presented. Thirdly, using the Lagrange

multipliers, discrete Lagrange equation of the nonconservative system with dynamic constraint is also established.
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Then two special cases are discussed. Finally, two examples are devoted to illustrate the results.
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0 Introduction

In 1937, Fort'" first introduced the theory for
the discrete calculus of variations. Based on this the-
ory, fractional difference operators within Caputo
sense were established and used to solve some dif-
ference equations®*. Besides, some important re-
sults of discrete calculus of variations were summa-
rized in Ref.[4]. Considering the useful applications
of the discrete analogues of differential equa-

tions!*™

, and intense investigations on the continu-
ous fractional calculus of variations'®*', Bastos"*"
started a fractional discrete-time theory of the calcu-
lus of variations in 2012. He introduced the fraction-
al difference operators of Riemann-Liouville type on
the basis of Refs.[ 24-25], and achieved the fraction-
al discrete Euler-lagrange equations. In particular,

when a =1, the classical discrete results of the cal-

culus of variations can be obtained.
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In this paper, we establish discrete Lagrange
equations of the nonconservative system and the
nonconservative system with dynamic constraint
within fractional difference operators of Riemann-Li-
ouville type. We use some properties of time scale
calculus for convenience. Time scale T, which is an
arbitrary nonempty closed subset of the real num-
bers, was introduced by Hilger in 1988, Tt fol-
lows from the definition that time scale calculus has
the features of unification and extension. From some
properties of time scale T', we can obtain the corre-
sponding properties for the continuous analysis
when letting T'— R. Similarly, we can obtain the
corresponding properties for the discrete analysis
when letting T=Z. Apart from R and Z, T has
many other values, for instance, T=y¢"'(g > 1).
We mainly use the properties of time scale calculus

by letting T= Z in this paper.
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1 Time Scale Calculus and Frac-
tional Calculus

We briefly review time scale calculus and frac-
tional calculus. Refs.[23, 27-28] provide more de-
tails.

A time scale T is an arbitrary nonempty closed
subset of the real number set. Hence, the integer set
Z and the real number set R are the special cases
of T.

et T be a time scale, then

(1) The mapping o: T—>T, o(¢)=inf{s € T
s > t}is called the forward jump operator.

)=sup{s € T:
s <t} is called the backward jump operator.

(3) the mapping 0: T—>[0,00), 0(¢)=0c (1)t
is called the forward graininess function.

(4) T*=T\(p(supT),supT ] when sup T <<
00; T* = T when supT = co.

(5) Let fx+T—> R, t& T", if for any e > 0,
there exists N=(z—6,t+ ) N T for some 6 > 0
such that | (f(o(2))f(w) —f*(t)o(t)w)|<
e\a(z‘,) *w| for all w € N, then f*(r)

(2) The mapping p: T— T, p(1

is called the
delta derivative of fat ¢.

When T=R, o(t)=p(t)=t,0(1)=0, f*(
f(t). When T=2, o(t)=t+1, p(t)=1—1,
0() =1,/ ()=f+)—f)=f"—f=Af.

In this paper, a is set to be an arbitrary real
number, and the time scale is {a,a+ 1,-++,b}. Then
,b — 1} Let
a, f be two arbitrary real numbers such that
a,3€(0,1], andputpy=1—a,v=1—f.

I'(x+1)
Fx+1—y)

it is easy to obtain T* = {a,a + 1,

For arbitrary x,y € R, 2" =

where I" is the gamma function.
The left fractional sum and the right fractional

sum are defined as

AL f(t Ay (A f(2))= A" A f()+
(t+p—a)y—"v
T() f(a) (1)
D)= =204, f(1))=— A, f(1)+

ﬁ(ﬁJﬂ)*d( )V f(b) (2)

where

A=)+

_n RN
ATESTP A CACHE AT

s=a

Ayt ()= f()+
v b o
m Z (S‘FV*U(Z))

s=o(1)

Vi) €T ()

Hence
AL ()= A f()=f (1),
Af() =40, (1), A, f(t)=—A,f(t) (5)

Fractional summation by parts is given as

SV (). A= F (b~ 1)glh)—
Fla)gla)t S a0, f(0)g (0)+

lad N _ (x—1) _

l=a

S (¢4 p—ola)) “f(t)J (6)

t=o0o(a)

Zf gt)=—g(b). A f(1

) | o) T

a) A ()

vg(b) 'S o v—1) ¢
mg(bTLV o(2)) S (7)

The commutative relations between the iso-

b—2
ot D080 ()AL () +

chronous variation and the fractional difference oper-
ators are

(8)

0 A f ()= A70f (1)
0 AL f ()= Afof (1)

2 Discrete Equation

Assume that the configuration of a mechanical
system is determined by the generalized coordinates
ql, i=1,2,--
T =T (t,q,.A0q,.,Aq,). The Hamilton’ s princi-

,n, the kinetic energy function is

ple for the nonconservative system with fractional
difference operators of Riemann-Liouville type has

the following form
b—1

SMNOT+Qog)=0 j=1,2,.n (9

where Q,;0¢] is the virtual work of the generalized
force Q;,q;,(a) =A,,q,(b) =B,
From Eqgs.(6) and (7), we have
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aT 5 g — /’j T Aoy — Q'; and the rtlonconserva.tive force Q”j. If Q'; is po-
=10.40q; =10.40q; tential, that is, there exists a function V=1V (z q )
aT aT ‘
—— (b—1)-0q;(b6)— — (a)- 0, (a)+ such that
auA/C]j aquq]’ v
= 0T 5q;(a) Gy o
=3 79 ’
Al -0qi () +
/Z; V9.4t d.Afq; (@) r(p+1) Since
b T v v
_ (u—1) _ « — Y, =0 (17)
2t g, W d.480q 9.4
o ~ Substituting Eqs. (16) and (17) into Eq.(15)
(pn—1) a T
D(ttp—o(a)) — ()| (0) have
co 7 AT~V T~V AT~V
=1 9T =1 9T 4( B ) + AN ( - ) + .47 ( 2 )
235 a8 Ae = X5 e - Aldg, = % 2.4t 748,
t=a aIAIiQ/ ‘ t=a a A/? j
/ Q//j: O
AT
76(]/ (b) - A,

t€{a,at 1, ,6—2}

Let L=T— V, Eq.(18) can be written as
)
aT
5‘1/(“) y

(18)
N — iy
M/}q/( ) | =

-+ A%, aLa + A7 8; +Q",=0
() |/7a + 3 d Alq; a.Aq;
d.4%q; t€a,at 1, b6— 2} (19)
SVoq; (1) “AﬁaaAf (1)+ F”ff[ibl)) ) If Q'; has the generalized potential, that is,
(=a v9i _ Y there exists a function U=U(1,q7,.A/q:,.A%q;)
Sty alor 2y st . . .
Considering Q= 8 H v A”U’)E) Alg, + = d.Aq; (20)
‘AT g = T g | s Substituting Eq.(ZO) into Eq.(15) , we have
= dq; dg; (12) 8(7+U)+A aT+u)  LUT+U)
/iﬂ . aq; 9.4l ’ 9.40q
= dq; Q=0 (€{a,atl,,6—2 (21)
hin 0 =Q,-0¢| . T Let L=T+U=T—V, Eq. (21) can be
e . written as
L 50° L aL aL
;Q, 5% (13) aqj + rAZ(/;) a“quj + “Aﬂ 3 A/)q} + Q”,-:O
and the boundary conditions ¢;(a)=2A;, ¢;(6)=1DB,, t€ lasat 1, b—2) (22)
we have _ Eq.(22) is called discrete fractional Lagrange equa-
531(57 +Q,0q)) = IE[Z’{ -6q] + tion of the nonconservative system
1 @ Remark 1 If a=1, L does not depend on
AT 5 .Arg - ad L0 Mg+ Qﬁqﬁ] _ A7 q,, and the discrete Lagrange equation of the non-
.41, d Al conservative system can be obtained
v—2( 3 7F ¥ T dL(t,q.(t+ 1),A,q; JdL
2[3; A a?Aaq/ + .Af ai?q/ + Q]](?qf—o | aqu((w 1)) “a, 90, e
(14) t€{a,at 1, ,6—2} (23)
Since the value of 8¢? is arbitrary, we obtain Eq.(23) is consistent with the result in Ref.[ 28]
3(]7; + A%, 83; o aaATg +Q =0 3 Discrete Equation with Dynamic
j a2 4 =04 .
e taiat 1 b—2) (15) Constraint
In Eq.(15),

Q), contains the conservative force

We assume that the motion of the nonconserva-



178 Transactions of Nanjing University of Aeronautics and Astronautics Vol. 36
i i i ing i - dh, oh
tive system is subjected to the following ideal dy A j 2, L Qr=o0 (32)
namic constraint d.A7q .45
hi(t,ql, Alq,, Alg,) =0 Let L= T — V, Eq.(32) can be written as
/3:1,2,"',g;i:1,2,"',77 (24) §5+ AaﬁaaAa + A/’)aaAI; +/1kaaAha +
which satisfies 8/1 s il
ohy dh, Ah———+Q"=0 (33)
—0q¢; =0,———0dq¢; =20 25 a.A7 ’
9 “A;zq] q; P A,) 7 QJ ( ) vq;

In the sequel, we study the d’ Alembert-Lagrange
principle with fractional difference operators. By virtue
of Eq.(15),

principle with fractional difference operators can be

the universal d’ Alembert - Lagrange

expressed as
aT aT aT
+ A7 + A7 — +
g7 D9 A, .0l <
[6goj=O0][t€a,at+1,---,6—2] (26)

Introducing the Lagrange multipliers A;, 2=

1,2,-,g, from Eq.(25), we obtain

2 O 0¢° =0, S¢7=0 (27

‘9.0, "aAbJ
It follows from Eqs.(26) and (27) that
0T oT aT

‘o A7 +Q +
g’ 19 .48, d.Alg,
ah, ah,
A + A £ 0¢° =0 28
kauAj’ ﬁaA,,qJ qi (28)

Similarly, considering the arbitrariness of the

value of 0¢;, we have

aT aT aT
+ A5 + A7 +Q;+
aq; d.47q; d.4A7q;
ah, ah,
A +A =0 29
b I A i A (29)

In Eq.(29), Q, contains the conservative force
Q'; and the nonconservative force Q",. If Q'; is po-

tential, that is, there exists a function V=V (7,¢7)

such that
av
Qy=—— (30)
dq;
Since
d av
vV =0, — =0 (31)
d.Alq, a.4lq;

Substituting Eqgs. (30) and (31) into Eq.(29), we
have
NT—V) L ANT—V)
Y + /A()(b) a

dq; d.A7q

T — V)

+ .47
d /Ag%

AT +U)

If Q’; has generalized potential, that 1s, there
exists a function U = U (¢, q7,.A% q;,.A7q;) such that
aUu U aUu
= + A + AP
a 4 0(0) 3 Aa a Aa a [A}qu

Substituting Eq.(34) into Eq.( 29) , we have
8(T+U)+HA€3(T7/LU)
d.A7q; azAiqf

dh, N
A + A +Q",=0 35
“Goarg, T Q" (35)

d A/' q;
Let L=T+U=T—V, Eq.(35) can be writ-
ten as

aL aL aL oh,
+ A0 + A + A +
dq; 'a Al g d .Afq; d .Alg;

Q=

(34)

aq; + IAZ(h)

A — %’ +Q",=0 (36)
d A,)q,

Eq. (36) is called discrete Lagrange equation with
multipliers of the nonconservative system with dy-
namic constraint. From Eqs.(36) and (24), A, and

¢, can be solved.
Remark 2 If a=1, L and A; do not depend
on Afq,, and the discrete Lagrange equation of the

nonconservative system with dynamic constraint can

be obtained

IL(t,q:(t+1),44q:) L dh,
—A A
dg;(t+1) "aAdq,+ e N
Q" =0 t€ {a,at1,,b—2  (37)

Eq.(37) is consistent with the result in Ref.[ 28].

4 Examples

Example 1 Consider the following nonconser-
vative system
1
2
Q'=—.Alg+ Alg+q

L=~ (Alq)+q¢ .Alg

with dynamic constraint
h=(Atq )+ ¢ =0 (39)
From Eq.(36), we have
Ay (q+ Alg)t 24 .Afg +
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Ag+q = (40)
From Eq.(39) we have
sinh=2.40q Ay (ATg)+

(7 (b

Arng” =0 (41)
It follows from Egs.(40) and (41) that
_ ,A;‘,u,)q”z _ Bwgt Mgt (42)
4(.A7q) 2.47q
Specially, when a = =1, we obtain
A4q° A"+ Ayg —
PE L L E EEL E ETE)
4(A,q ) 24049

Example 2 There is a well -~known example

called Appell-Hamel'*

. We discuss the example of
Appell-Hamel within fractional difference operators
of Riemann-Liouville type.

The Lagrangian is

1
L= —m[(Alq) +(.Alg.) +(.Algs)]—

2
mgaqs (44)
the dynamic constraint is
b )
h= [( AQQI) +(1‘A7(]2)_]_
(D gs) = (45)

From Eq.(36), we have

2

m Ay A7 Afg, =0

2/92 (46)

m Ap(h)uAa 2+/1 Aan_O

—mg + m A, MA, qs — 24,4[q:=0

From Eq.(45), we have
2

/AZ(/y)h Aa% /AZ(/,)(aAﬂ[l)JF

Z“

20°

z PAWPR p(/t (uquz)_

2 A} qs - (;(/) ( qu;;):O (47)
It follows from Eqs.(46) and (47) that

7a4g aA/aq.?
264[(64Af91)2 +(uAfC]2)ZJ+ 204(11Af93)1“

Specially, when a = =1, we obtain

A=

—a'gA.qs
20" [( Ad([l )2 +( Ad(jz)zJJr 2a* ( A(/(]3)2

A= (49)

5 Conclusions

Using the properties of the time scale calculus,
discrete LLagrange equations of the nonconservative

system and the nonconservative system with dynam-

ic constraint in terms of fractional difference opera-
tors of Riemann - Liouville type are obtained. Two

special cases are given. In addition, the proposed

method can also be applied to study other mechani-

cal systems, such as the Hamiltonian system and

the Birkhoffian system.

In addition, we will conduct further research in
symmetry and conserved quantity, perturbation to
symmetry and adiabatic invariants within f{ractional
difference operators of Riemann - Liouville type of

constrained mechanical systems.
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