
Apr. 2019 Vol. 36 No. 2Transactions of Nanjing University of Aeronautics and Astronautics

A Generic Plug‑and‑Play Navigation Fusion Strategy for

Land Vehicles in GNSS‑Denied Environment

LAI Jizhou*，BAI Shiyu，XU Xiaowei，LÜ Pin

Key Laboratory of Navigation，Control and Health‑Management Technologies of Advanced Aerocraft，Ministry of Industry and
Information Technology，College of Automation Engineering，Nanjing University of Aeronautics and Astronautics，Nanjing

211106，P. R. China

（Received 15 March 2019；revised 3 April 2019；accepted 4 April 2019）

Abstract: Achieving accurate navigation information by integrating multiple sensors is key to the safe operation of
land vehicles in global navigation satellite system（GNSS）‑denied environment. However，current multi‑sensor
fusion methods are based on stovepipe architecture，which is optimized with custom fusion strategy for specific
sensors. Seeking to develop adaptable navigation that allows rapid integration of any combination of sensors to obtain
robust and high‑precision navigation solutions in GNSS‑denied environment，we propose a generic plug‑and‑play
fusion strategy to estimate land vehicle states. The proposed strategy can handle different sensors in a plug‑and‑play
manner as sensors are abstracted and represented by generic models，which allows rapid reconfiguration whenever a
sensor signal is additional or lost during operation. Relative estimations are fused with absolute sensors based on
improved factor graph，which includes sensors’error parameters in the non‑linear optimization process to conduct
sensor online calibration. We evaluate the performance of our approach using a land vehicle equipped with a global
positioning system（GPS） receiver as well as inertial measurement unit（IMU），camera，wireless sensor and
odometer. GPS is not integrated into the system but treated as ground truth. Results are compared with the most
common filtering‑based fusion algorithm. It shows that our strategy can process low‑quality input sources in a
plug‑and‑play and robust manner and its performance outperforms filtering‑based method in GNSS‑denied
environment.
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0 Introduction

One of the essential technologies that ensure re‑
liable operation of land vehicles is navigation. Cur‑
rent land vehicles heavily rely on global navigation
satellite system（GNSS）. However，when land vehi‑
cles run in the dense or even GNSS‑denied environ‑
ment，GNSS signal degrades or even fails to locate
land vehicles［1］.

When GNSS signal is unavailable， accurate
navigation solutions can be obtained through inte‑
grating multiple sensors. Multi‑sensor fusion meth‑
ods have been deeply studied and widely applied in

the field of land vehicles［2‑4］. However，these naviga‑
tion systems are based on stovepipe architecture［5］，
which is customized for specific sensors and mea‑
surement sources. It brings about huge costs when‑
ever the navigation system requires changes or up‑
dates. To change existing fusion architectures，De‑
fense Advanced Research Projects Agency（DAR‑
PA），USA launched All Source Positioning and
Navigation（ASPN）project in 2010［6］. ASPN proj‑
ect aims to develop adaptable navigation that allows
rapid integration of any combination of sensors to en‑
able low cost，and seamless navigation solutions for
military users on any operational platform and in any

*Corresponding author，E‑mail address：laijz@nuaa.edu.cn.
How to cite this article: LAI Jizhou，BAI Shiyu，XU Xiaowei，et al. A Generic Plug‑and‑Play Navigation Fusion Strategy
for Land Vehicles in GNSS‑Denied Environment［J］. Transactions of Nanjing University of Aeronautics and Astronautics，
2019，36（2）：197‑204.
http：//dx.doi.org/10.16356/j.1005‑1120.2019.02.002



Vol. 36Transactions of Nanjing University of Aeronautics and Astronautics

environment. Many researchers have performed re‑
search on ASPN.

For the software systems，Elsner and Juang de‑
signed the plug‑and‑play multisensory fusion
schemes based on robot operating system
（ROS）［7‑8］. For the fusion architectures and algo‑
rithms，filtering‑based estimation methods are most‑
ly used. Soloviev et al. proposed reconfigurable inte‑
gration filtering Engine（RIFE）. In RIFE，various
sensors are represented by generic classes. Each
class is defined by the type of sensor measurement
and the filter can be reconfigured by instantiating a
sensor object whenever a new sensor is connected to
system［9］. Lynen et al. proposed multi‑sensor‑fusion
extend kalman filter （MSF‑EKF） to process
time‑delayed，relative and absolute measurements
from a theoretically unlimited number of different
sensors. Its modular design allows seamless han‑
dling of additional / lost sensor signals［10］. Groves
proposed sensor fusion modular integrated architec‑
ture，where different subsystems are constructed to
process and integrate different sources［11］. Zhu et al.
presented a goal‑driven sensor configuration. CPU
time，power，and weight are combined to reconfig‑
ure sensor suite and all chosen measurements are in‑
tegrated using EKF［12］. Although above research
has achieved satisfactory results，the filtering‑based
methods have in common that they restrict the state
vector to the most recent state and marginalize out
all old information，which brings out suboptimal per‑
formance［13‑14］. In contrast to filtering‑based meth‑
ods，a graphical model known as factor graph repre‑
sents information fusion problem as a graph‑based
nonlinear least squares optimization. It encodes the
connectivity between the unknown variable nodes
and the received measurements. Multisensory fusion
methods via factor graph can handle delayed and
asynchronous sources in a flexible way because past
states are kept during the global optimization pro‑
cess［15］. And it outperforms EKF because of the
re‑linearization process［16］. Chiu et al. proposed a
constrained optimal selection for sensors based on
factor graph and the optimal subsets of sensors are
selected with available resources，navigation accura‑

cy and observability index［17］. Considering the re‑
al‑time application，Merfels et al. proposed a slid‑
ing‑window factor graph method for autonomous ve‑
hicles［18］. Watson et al. evaluated the effectiveness
of robust optimization techniques using the factor
graph framework. It shows that the factor graph al‑
gorithm in conjunction with robust optimization can
achieve reasonable performance in the GNSS‑de‑
graded environment［19］. However，above research is
still optimized with custom fusion solutions，which
is inadequate for the flexible and extensible needs of
land vehicles navigation system.

Seeking to develop adaptable navigation that al‑
lows rapid integration of any combination of sensors
to enable seamless，robust and accurate navigation
solutions in GNSS‑denied environment，we pro‑
pose a generic plug‑and‑play fusion strategy based
on factor graph for land vehicles. The strategy is de‑
signed using abstraction method. Various abstract
sensor models are designed by the type of sensors，
rather than for a specific sensor. When a sensor is
connected into the navigation system，the specific
sensor model is built from the abstract model and its
error registration is implemented. The proposed
strategy allows rapid reconfiguration of any combina‑
tion of sensors. Also，its modularity enables the fu‑
sion architecture to be flexible and extensible to new
sensors and new capabilities. In addition，time‑de‑
layed sensor data，which presents low‑quality char‑
acteristics，can be processed in a natural way based
on the improved factor graph，in which error param‑
eters of sensors are also added into the graph model
to conduct sensor online calibration. We evaluate
performance of the proposed strategy using a land
vehicle equipped with heterogeneous sensors. It
shows that our strategy can process low‑quality data
in a plug‑and‑play and robust manner and its perfor‑
mance outperforms the most common filter‑based
method.

1 Generic Sensor Fusion Strategy

The proposed strategy is shown in Fig.1，whi‑
ch consists of three parts，preprocessing layer，ab‑
stracting layer and fusing layer.
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1. 1 Preprocessing layer

In the preprocessing layer，raw measurement
sources are processed into usable navigation infor‑
mation. When a sensor is connected into the sys‑
tem，it is recognized and corresponding ID is at‑
tached into this source. Then，data conversion is
conducted according to specific sensor type. For ex‑
ample，images of camera are converted into pose es‑
timates. Considering that sensors are placed in dif‑
ferent locations of a vehicle， spatial parameters
among different sensors obtained from an offline cal‑
ibration are offset in space‑time alignment. Also，
time stamping is implemented in this step. Relative
and absolute measurements are also aligned by trans‑
formation between different frames.

1. 2 Abstracting layer

In the abstracting layer，various abstract sensor
models are designed according to the type of sen‑
sors. This layer consists of four abstract models，
that is，dead reckoning model，position model，ve‑
locity model，and attitude model. The specific mod‑
el of a sensor can be instantiated using its templates
by identifying information’s ID. Also，sensor error
registrations are conducted. For example，a sensor’s
specific noise and error parameters are added into
the built model.

Dead reckoning model represents recursive sen‑
sors，such as inertial or other dead reckoning sen‑
sors. Its abstract model can be conceptually de‑
scribed by following continuous nonlinear differen‑

tial equation
ẋ= fDR (x,α,Δ) (1)

where x is the navigation state，representing the ve‑
hicle’s position，attitude and velocity；Δ the incre‑
ment of the vehicle measured by sensors and α the
calculated model of errors in sensors. Other models
represent sensors that provide with other measure‑
ment information，that is，position，velocity and at‑
titude. Their abstract models can be described in a
unified way

z= hM (x) + n (2)
where x is navigation state，representing the vehi‑
cle’s position，attitude and velocity；z the informa‑
tion measured by sensors and n a measurement
noise，which is assumed to be zero mean Gaussian
noise. hM is the measurement function，relating be‑
tween the measurement and navigation state.

1. 3 Fusing layer

In the fusing layer， non‑linear optimization
methods based on factor graph is formulated. A fac‑
tor graph is a bipartite graph G= (F，X，E) with
two types of nodes：Factor nodes fi ∈ F and vari‑
able nodes xi ∈ X. Edges eij ∈ E can exist only be‑
tween factor nodes and variable nodes，and are pres‑
ent if and only if the factor fi involves a variable xi.
The factor graph G defines one factorization of the
function f (X ) as

f (X ) = fi ( Xi ) (3)
where Xi is the set of all variables xi connected by
an edge to factor fi［20］.

A factor describes an error between the predict‑
ed and actual measurements. Assuming a Gaussian
noise model，a measurement factor can be written as

fi ( Xi )= d [ hi ( Xi )- zi ] (4)
where hi ( Xi ) is the measurement model as a func‑
tion of the state variables Xi；zi the actual measure‑
ment and d ( ⋅ ) a cost function，which is the squared
Mahalanobis distance，defined as d (e) ≜ eT Σ-1 e，

with Σ being the measurement covariance. Process
models can be represented using factors in a similar
manner.

Eq.（3） should be minimized by adjusting the
estimates of the variables X. The optimal estimate is

Fig.1 Generic multi‑sensor fusion strategy
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the one that minimizes the error of the entire
graph［21］

X̂= arg min
X
( ∏

i

f i ( Xi ) ) (5)

Different sensor information is added into the
factor graph as variable and factor nodes. The
time‑delayed and asynchronous measurements can
be incorporated into the factor graph in a natural
way，leading to better estimates for current states.

2 An Improved Sensor Fusion

Method for Land Vehicles Based

on Factor Graph

The structure of the improved multisensory fu‑
sion method is shown in Fig.2. Based on factor gra‑
ph framework， sensor errors are added into the
graph model to implement global optimization. The
optimized error parameters are utilized to calibrate
sensor measurements. Owing to sensor error online
calibration，better estimates for the whole trajectory
can be obtained.

Considering that the most common sensors in
typical navigation applications of land vehicles，im‑
proved factor graph for land vehicles is built in
Fig.3. The considered sensors are IMU，GPS，od‑
ometer，visual sensors， and wireless sensors. In
this paper，GPS factor is built in the graph model to
be adaptive to various applications. However，GPS
signal is not fused with other sensors but used as
ground truth in the field tests to prove the perfor‑
mance of the proposed algorithm in GNSS‑denied
environment.

Sensors’error parameters are added into graph

to implement global optimization. Black hollow cir‑
cles mean navigation states and f IMU means IMU
factor. Jasper hollow circles mean IMU bias，which
is introduced at a lower frequency than navigation
states as it changes slowly during operation. Blue
solid circles mean odometer factor while grey hol‑
low circles represent scale factor error of odometer.
Red，yellow and purple solid circles mean visual
odometry，wireless sensor，and GPS factor，respec‑
tively. Green hollow circles represent scale error of
camera. Navigation states of land vehicles and error
parameters of sensors are optimized together to im ‑
prove estimation accuracy. Error parameters are
used to modify corresponding measurements. Sen‑
sor factors are built as follows

2. 1 IMU factor

IMU factor is built to connect navigation states
at two sequential times. Considering time k and time
k+ 1，IMU factor is derived as

f IMU ( xk+ 1,xk,αk )≜ d ( xk+ 1- h ( xk,αk,zk ) ) (6)
where xk+ 1 and xk are navigation states at time
k+ 1 and k，respectively；zk= [ αk ωk ] is the giv‑
en IMU measurements，that is，acceleration and an‑
gular rate；αk the bias of inertial sensor，which is es‑
timated to modify the IMU sensor data. The Euler
integration prediction function with a noise is adopt‑
ed to represent h ( ⋅ ). In the same way，bias factor
can be described as

f bias ( αk+ 1,αk )≜ d ( αk+ 1- g ( αk ) ) (7)
where αk+ 1 and αk are the biases at time k+ 1 and
k，respectively. Bias is modelled as constant error.

2. 2 Odometer factor

Odometer provides with velocity information
and its factor can be represented as

f ODO ( xk,βk )≜ d ( zODOk - hODO ( xk,βk ) ) (8)

Fig.2 Structure of the improved fusion method

Fig.3 Improved factor graph for land vehicles
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where zODOk and xk are the velocities of odometer and
navigation state at time k；βk is the scale factor er‑
ror，which is obtained to modify odometer data. In
the same way，scale factor error can be derived as

f scale ( βk+ 1,βk )≜ d ( βk+ 1- g ( βk ) ) (9)
where βk+ 1 and βk are the scale factor errors at time
k+ 1 and k，respectively. Scale factor error is mod‑
elled as constant error.

2. 3 GPS factor

GPS factor is built to provide with absolute po‑
sition and its factor can be modelled as

f GPS ( xk )≜ d ( zGPSk - hGPS ( xk ) ) (10)
where zGPSk and xk are the positions of GPS and navi‑
gation state at time k.

2. 4 Wireless sensor factor

Wireless sensor provides ranging information
to base stations. When wireless sensor can receive
at least three ranging information to base stations
whose positions are obtained in advance，it can pro‑
vide with position in the given frames and its factor
can be modelled as

f WS ( xk )≜ d ( zWSk - hWS ( xk ) ) (11)
where zWSk and xk are the positions of wireless sensor
and navigation state at time k.

2. 5 Visual sensor factor

Visual sensor provides with relative position
when visual odometry algorithm is used. After the
relative and absolute measurements are aligned，it
provides with pose information in the global frame.
Its factor can be represented as

f VOP ( xk )≜ d ( zVOPk - hVOP ( xk,λk ) ) (12)
f VOH ( xk )≜ d ( zVOHk - hVOH ( xk ) ) (13)

where zVOPk and xk are the position of visual sensor
and navigation state at time k；zVOHk is the yaw of vi‑
sual sensor at time k；λk the scale error and it is mod‑
elled as constant error. Its factor can be represented
as

f scale ( λk+ 1,λk )≜ d ( λk+ 1- g ( λk ) ) (14)
where λk+ 1 and λk are the scale errors at time k+ 1
and k，respectively.

3 Experiment

In the field tests， we use a land vehicle

equipped with a GPS receiver as well as IMU，ste‑
reo camera，UWB（a kind of wireless sensor）and
odometer. The land vehicle is shown in Fig.4. GPS
receiver provides with precise positioning of centi‑
meter‑level solutions when it operates in real‑time
kinematic（RTK）mode，which is treated as ground
truth. GPS is not integrated into the navigation sys‑
tem，which only to evaluate the performance of the
proposed strategy in GNSS‑denied environment.
Data acquisition module is designed based on ROS.

The trajectory of the field test is shown in
Fig. 5 with Google map. The starting point is mar ‑
ked with a star and arrows show the driving direc‑
tion. A certain color of the trajectory means the cor‑
responding section where a certain combination of
sensors is integrated into the navigation system，be‑
cause some sensors are available in specific circum ‑
stances. For example， red line is surrounded by
base stations，and the UWB is available only in this
part. Also， the roadway in blue part is the area
where feature is sparse，which leaves the camera in
an unusable state and not be integrated into the navi‑
gation system. In the test， different information
sources are integrated to the system whenever they
are available.

When a sensor is connected into system，spe‑
cific models are constructed and corresponding fac‑
tors are added into the factor graph. And time‑de‑
layed and asynchronous measurements can be fused
in the factor graph in a truly plug‑and‑play manner
since past states are kept to perform global optimiza‑
tion.

We compare our results with the most common
filtering‑based method，EKF. The drawback of a

Fig.4 Land vehicle used in the field test
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basic EKF is that linearization happens only once，
which can lead to a lower performance. Also，EKF
is sensitive to time‑delayed measurements which
presents low‑quality characteristics，as states cannot
be propagated back in the filter. To evaluate impacts
of low‑quality information on EKF，we add time de‑
lays and noise into sensor data at different times，
which equivalently injects faults into the data. Time
delay is set to be 1 s，which is large enough to im‑
plement error excitation.

The trajectory comparison is shown in Fig. 6.
The east and the north position error comparisons
are plotted in Figs. 7，8，in which the time periods
with faulted VO measurements are marked with
dashed lines. We can see that both fusion methods
present slow drift as there is no absolute position
measurement at most times. Also，position errors of
EKF are highly increased during periods when fault‑
ed data is fused. On the contrary，since past states
are kept in global optimization process，delayed in‑
formation can be added to graph model based on
their time stamp in a plug‑and‑play way，leading to
better estimates for current states.Root‑mean‑ square

（RMS） errors of the position error is illustrated in
Table 1.

4 Conclusions

We propose a generic plug‑and‑play multi‑sen‑
sors fusion strategy for land vehicles in GNSS‑de‑
nied environment. The strategy handles different
sensors in a flexible way as sensors are represented
by their generic models. Relative estimations are
fused with absolute sensors based on improved fac‑
tor graph，in which sensors’error parameter can be
added into graph optimization to perform sensor on‑
line calibration. We demonstrate the performance of
our system through field tests. It shows that tradi‑
tional filtering method is heavily influenced by
low‑quality sensor data. Our strategy can process
time‑delayed input sources in a plug‑and‑play and ro‑
bust manner and its performance outperforms EKF
in GNSS‑denied environment.

In our future work，the integrated quality of
the measurements，not just restricted to sensor accu‑

Fig.5 Field test in general road campus of NUAA

Fig.6 Trajectory comparison

Fig.7 East position error comparison

Fig.8 North position error comparison

Table 1 RMS comparison m

RMS
EKF

Proposed method

East
10.78
5.99

North
13.80
9.44
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racy，will be considered to measure sensor’s confi‑
dence level in the fusion process，thus further im‑
proving robustness and accuracy of the system.
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