
Apr. 2019 Vol. 36 No. 2Transactions of Nanjing University of Aeronautics and Astronautics

A Distributed Cooperative Localization Algorithm for Mobile

Multi⁃platforms Oriented to Unpredicted Communication

Topology

WANG Leigang*，CUI Jianling，KONG Depei，ZHAO Linfeng

Luo Yang Electronic Equipment Test Center of China，Luoyang 471003，P.R. China

（Received 28 May 2018；revised 15 November 2018；accepted 20 November 2018）

Abstract: The cooperative localization（CL）is affected by the communication topology among the platforms. Based
on the unscented Kalman filtering，the distributed CL（DCL）oriented to the unpredicted communication topology is
investigated. To improve the adaptability，the character of the look ⁃ up Cholesky decomposition is exploited for the
covariance matrix decomposing. Then，the distributed U transformation can be dynamically implemented according to
the available communication topology. In the proposed algorithm，the global information is not required for the
individual，and only the available information from the neighbor is used. Each platform’s state can be estimated
independently. The error covariance of the state estimates can be updated in the single platform. The algorithm is
adaptive to any serial communication topologies where the measuring to the measured platform is a starting path. The
applicability of the proposed algorithm to unpredicted communication topology is improved，remaining equivalent
localization performance to free connection communication.
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Nomenclature

N Total number of platforms
xi,yi Actual position scalar of platform i
xi Actual position vector of platform i
x̄ i Predictive position estimate of platform i
x̂ i Posteriori position estimate of platform i
Vmi Measurement linear velocity
νi Measurement noise of linear velocity
zij Relative measurement between platform i,j
nij Noise of relative measurement zij
Pij Error covariance of the estimates between platform i,j
x Whole actual position vector, x=[ x1,⋯,xN ]
P Whole error covariance of position estimate
k Time step
δ Sample interval
Θ̄ ( k ) Predictive estimate of the variable Θ
Θ̂ Posteriori estimate
[ Θ 1；Θ 2 ] Column stacking of the variables Θ 1，Θ 2

0 Introduction

Multi⁃platforms cooperation has great pros⁃
pects in the military and the civil field，for example，
environment exploring， coordination attacking［1⁃2］.
Accurate self⁃localization is a premise for these
tasks. Only relying on the inertial navigation unit or
the integrated navigation system，the localization er⁃
ror will increase with time. This issue can be allevi⁃
ated by the cooperative localization（CL），where
the inter ⁃ platform measurements are utilized to im ⁃
prove the localization accuracy.

The information flowing among the platforms
is the impetus for CL. However， in reality， the
flowing may be constrained by the problems as fol⁃
lows：（1）Some platforms fail accidentally and can⁃
not serve as the communication nodes；（2）various
interferences affect the communication link；（3）the
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geometric distance is beyond the communication
range. Consequently，the free communication topol⁃
ogy cannot be guaranteed. Instead，it may be time ⁃
varying and un⁃prescribed， i. e.， the unpredicted
communication topology. The applicability of CL is
thus restricted.

The CL has been investigated by several tech⁃
niques，e. g.，geometrical pattern［3］，probabilistic
reasoning［4⁃5］ ， filtering［6⁃8］. Consider that the first
two techniques are unfavorable in the calculation
and storage cost. Additionally，the centralized archi⁃
tecture is easy to be disabled. Hence，the distributed
CL（DCL） based on the filtering is hot. In early
works，how to improve the localization accuracy is
focused，and usually assume that each platform can
get what it needs freely. In recent years，the influ⁃
ence from the communication topology has been
gradually considered. In Ref.［9］，a DCL algorithm
suitable for the fan ⁃shaped communication topology
is proposed. In Ref.［10］，a DCL algorithm adapted
to the tree⁃like communication topology is
addressed. Ref.［11］ proposed a DCL algorithm
adapted to a fixed ring structure. In the above algo⁃
rithms，the extended Kalman filtering（EKF）or its
inverse form is adopted for the non ⁃ linearity issue.
While it has a few inherent defects in the accuracy
and calculation cost.

Considering the advantages of unscented Kal⁃
man filtering（UKF） for the nonlinear system［12］，

the UKF is employed. Based on the UKF，we at⁃
tempt to improve the applicability of the DCL algo⁃
rithm to the unpredicted communication topology.
In this process，two innovations are achieved：

（1） The recursion character of the look⁃up
Cholesky decomposition is exploited for the covari⁃
ance matrix decomposing.

（2）The algorithm is self⁃adaptive to the unpre⁃
dicted communication topology. The unfixed serial
communication topologies taken measurer⁃measuree
platform as starting path can implement the algo⁃
rithm.

1 Problem Statement

Assume that N platforms move in a two⁃dimen⁃

sional area where a fixed reference frame is set. The
position of each platform is denoted as the vector
x i ( k )=[ xi ( k )；yi ( k ) ]. ϕ denotes the motion head⁃
ing. According to the linear velocity measurement
Vmi ( k ). The predictive position estimate of platform
i can be expressed as

x̄ i ( k+ 1 )= x̂ i ( k )+
é

ë
êê

ù

û
úú

δVmi ( k ) cosϕmi
δVmi ( k ) sinϕmi

(1)

At a certain moment k，assume that platform i
detects platform j and obtains the relative measure⁃
ment between them（e. g.，relative distance，rela⁃
tive azimuth）. The relative measurement can be ex⁃
pressed as

z ij ( k ) = h ij ( x i ( k ),xj ( k ) )+ nij ( k ) (2)
where nij ∼ N ( 0，R ij ).

To this point，the CL based on the filtering can
be stated as follow：at the moment k，based on the
data of the predictive estimate { x̄ i ( k ) } Ni= 1，the cor⁃
responding error covariance P̄ ( k ) and the relative
measurement z ij ( k )，how to obtain the much credi⁃
ble posteriori estimate { x̂ i ( k ) } Ni= 1 as well as the
corresponding covariance P̂ ( k ) for the single plat⁃
form.

2 CL Model Based on UKF

As the usual KF，two stages，i.e.，the time up⁃
date and the observation update，are included in
UKF. However，the position estimate is updated by
the U transformation rather than the linearization as
EKF. Here，how to implement the U transforma⁃
tion in a distributed manner，especially under the
non⁃free communication，is crucial.

2. 1 Time update

The data of proprioceptive measurement（e.g.，
velocity）and the relative measurement are essential
for the time update and the observation update re⁃
spectively. In CL，the frequency of relative mea⁃
surement is lower than the proprioceptive one ［7］.
Thus，the time update and observation update are
not carried out alternatively. The former always
runs and the latter does not.

At each moment，since Eq.（1） is linear，the
time update runs as the common KF. It has been
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proved that this update can be done independently in
the single platform without communicating each oth⁃
er—see，e.g.，Refs.［6，10］.

When no relative measurement occurs，to uni⁃
fy the formula，after each time update，let

x̂ i ( k+ 1 )= x̄ i ( k+ 1 ) (3)
P̂ ij ( k+ 1 )= P̄ ij ( k+ 1 ) (4)

2. 2 Observation update

Assume that at the moment k，platform m de⁃
tects platform n and obtains the relative measure⁃
ment zmn ( k ). To clear out the necessary elements
for the single platform，first we analyze the distribut⁃
ed observation update of the centralized cooperative
localization（CCL）where all data are centrally pro⁃
cessed. Then，we address how to ensure that the
single platform obtains the necessary elements.

The CCL provides a gold ⁃ standard benchmark
for other algorithms. In CCL，the whole predictive
position and the error covariance can be expressed
as x̄ ( k )=[ x̄ 1 ( k )，⋯，x̄N ( k ) ] and

P̄ ( k )=
é
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P̄ 11 ( k ) ⋅ ⋅ ⋅ P̄ 1N ( k )
⋮ ⋱ ⋮

P̄N1 ( k ) ⋅ ⋅ ⋅ P̄NN ( k )
∈ R 2N × 2N，respec⁃

tively.
For the observation update，the first step is us⁃

ing x̄ ( k ) and P̄ ( k ) to calculate 4N+ 1 sets of the σ
point by the U transformation，i.e.
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ξ̄ ( 0 )k = x̄ ( k )

ξ̄ ( p )k = x̄ ( k )+ ( 2N+ λ ) P̄ ( k ) ( :,p )
p= 1,2,⋯,2N

ξ̄ ( p )k = x̄ ( k )- ( 2N+ λ ) P̄ ( k ) ( :,p- n )
p= n+ 1,n+ 2,⋯,4N

(5)

where λ is a constant and Θ (：，p ) the pth column of
matrix Θ. Then，each set of the σ point can be prop⁃
agated by Eq.（2），i.e.
ζ̄ ( p )mn ( k )= h ( ξ̄ ( p )k (m ),ξ̄ ( p )k ( n ) ),p= 0,1,⋯,4N (6)

z̄mn ( k )= ∑
p= 0

4N

ωm
( p ) ζ̄ ( p )mn ( k ) (7)

where ξ̄ ( p )k ( i ) ∈ R 2 × 1 is the ith block in vector ξ̄ ( p )k .
z̄mn ( k ) is the predictive relative measurement.

According to Eq.（7），the variance of the pre⁃
dictive measurement can be obtained as

P̄ z͂ ( k )= ∑
p= 0

4N

{ ωc
p ( ζ̄ ( p )mn ( k )- z̄mn ( k ) )×

( ζ̄ ( p )mn ( k )- z̄mn ( k ) )T + Rmn ( k ) } (8)
The error covariance between the predictive

relative measurement and the predictive estimate is
given as

P̄ x͂z͂ ( k )= ∑
p= 0

4N

ωc
( p ) ( ξ̄ ( p ) ( k )- x̄ ( k ) ) ( ζ̄ ( p )mn ( k )-

z̄mn ( k ) )T
(9)

where ω c
p= ωm

p = 0.5/( 2N+ λ ).
By Eqs.（8），（9），according to the method of

KF observation update，the whole predictive esti⁃
mate can be updated as

x̂ ( k )= x̄ ( k )+ K ( zmn ( k )- z̄mn ( k ) ) (10)
P̂ ( k )= P̄ ( k )+ KP̄ z͂ ( k ) K T (11)

K= P̄ x͂z͂ ( k ) /P̄ z͂ ( k ) (12)
Inspecting Eq.（10），the local measurement zmn

would update all the predictive estimates，and two
types of elements are required：

（1）The elements related to the measuring and
measured platform m，n，i.e.

Sm ( k )= { zmn ( k )- z̄mn ( k ),ζ̄ ( p )mn ( k )-
z̄mn ( k ),P̄ z͂ ( k ) } (13)

which is called the source location information.
（2） The elements that determine how much

the source location information is utilized， i. e.，
P̄ x͂z͂ ( k ). Any block element in P̄ x͂z͂ ( k ) can be ex⁃
pressed as
P̄ i
x͂z͂ ( k )= f ( ξ̄ ( p )i ( k )- x̄ i ( k ),ζ̄ ( p )mn ( k )- z̄mn ( k ) ) (14)

which is called the update weight，being only relat⁃
ed to the source location information and the single
platform i.

As Eq.（5），to obtain the σ points，the whole
covariance matrix P̄ ( k ) and x̄ ( k ) are required. Both
exist at the center in CCL. However，in DCL，con⁃
fined by the communication condition，the whole co⁃
variance matrix P̄ ( k ) may be unavailable for each
platform. Accordingly， two questions arise. One
question is that the single platform cannot carry out
the U⁃transformation to obtain the corresponding σ
point as Eq.（5）. The other is that as Eq.（11）is up⁃
dated，along with the predictive estimates，the cor⁃
responding covariance also should be updated while
it depends on the whole P̄ x͂z͂ ( k ) and P̄ ( k ).
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3 UKF⁃DCL Algorithm

3. 1 Distributed U transformation

In some cases，the platform may be only re⁃
ceive its neighbors’ information， instead of the
whole elements X，P. Here，how the single plat⁃
form obtains the equivalent σ points as the CCL is
the prerequisite. Inspecting Eq.（5），it can be found
that， to obtain the corresponding to the element
ξ̄ ( p )k ( i )，how the single platform i obtains the ith

row elements in the matrix P̄ ( k ) is the key for the
distributed U transformation. Considering the sym⁃
metry of the matrix P，it can be decomposed into a
lower triangular matrix A， i. e.，P= AAT and
P = A. The look ⁃ up Cholesky decomposition is

employed to obtain the matrix A. Let A=
[ A 1，⋯，AN ] and A i=[ A i1，⋯，A ii ] ∈ R 2 × 2i. Each
block Aij can be obtained by
é
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A 11 ⋯ 0
⋮ ⋱ 0

A ( i- 1)1 ⋯ A ( i- 1)( i- 1)
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i1

⋮
AT

i( i- 1)
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P T
i1

⋮
P T
i( i- 1)

(15)

A iiAT
ii = P ii-[ A i1,⋯,A i( i- 1)] [ A i1,⋯,A i( i- 1)]T

(16)
Inspecting Eqs.（15），（16），the elements A j ( j>

i ) and P T
ij ( j> i ) supplied by platform j are not re⁃

quired for the row block A i. Assume that platform i
receives the message from its neighbor，meanwhile
an up ⁃neighbor set neighui ={ 1，2，⋯，i- 1 } is also
available，which records the platform IDs of the
message passing by. Then，for the receiver i，ac⁃
cording to neighui，it can get the corresponding ele⁃
ment A i. The first row A 11 is obtained as A 11 =
P 11 . The successive row block can be obtained by

the recursion. It means if the element blocks in the
matrix Pare virtually adjusted accordance with the
communication order and decomposed， then each
block A i ( i= 1，⋯，N ) can be sequentially obtained.

Since the block P̄ ij represents the error covari⁃
ance between the predictive estimates of platforms
i，j，the position adjustment of P̄ has no effect on its
value. Thus，when one relative measurement oc⁃
curs between the measuring platform m and mea⁃
sured platform n，the corresponding covariance item

would be dynamically adjusted to the first position
of the matrix P and forms a new covariance matrix
as follows
é
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P̄ 11 ( k ) ⋅ ⋅ ⋅ P̄ 1N ( k )
⋮ ⋱ ⋮

P̄N1 ( k ) ⋅ ⋅ ⋅ P̄NN ( k )
⇒
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P̄mm ( k ) P̄mn ( k ) *
P̄ nm ( k ) P̄ nn ( k ) *
* * *

(17)
According to Eq.（14），only using its inherent

element P̄mm ( k )， the platform m can obtain the
block A 11. Then it is added to the source location in⁃
formation Sm ( k ) and transmitted to the measured
platform n. As the receiver n， according to
Eqs.（13），（14），using A 11 and P̄mn ( k )，it obtains
A 21，A 22 and forms the secondary location informa⁃
tion Sn ( k ) and sends to its neighbor a（a ∉ neighun）.
Based on the dynamic decomposition strategy of the
covariance matrix，during the U transformation，the
block element ξ̄ ( p )i ( k ) ∈ R 2 × 1 in the vector ξ̄ ( p ) ( k )
corresponding to the platform i can be expressed as

ξ̄ ( p )i ( k )=
ì
í
î

ï

ï

x̄ i+ ( n+ λ ) A i ( :,p ) 0 < p ≤ 2i
x̄ i p= 0,p > 2i

(18)

Substituting Eq.（18） into Eq.（7），the predic⁃
tive relative measurement can be obtained. In plat⁃
form i，utilizing the ξ̄ ( p )i ( k ) points，the covariance
item between the predictive estimate and the predic⁃
tive relative measurement can be expressed as

P̄ i
x͂z͂ ( k )= ∑

p= 0

4N

ω ( c )p ( ξ̄ ( p )i ( k )- x̄ i ( k ) ) ( ζ̄ ( p )mn ( k )-

z̄mn ( k ) )T
(19)

Substituting Eq.（18）into Eq.（19），we have

P̄ i
x͂z͂ ( k )= ∑

p= 1

2 || neighui
ω ( c )p ( ξ̄ ( p )i ( k )- x̄ i ( k ) ) ( ζ̄ ( p )mn ( k )-

z̄mn ( k ) )T
(20)

where | neighui | denotes the number of the up⁃neigh⁃
bors of platform i. Inspecting Eq.（20），the update
weight P̄ i

x͂z͂ ( k ) is only related to the element
ζ̄ ( p )mn ( k )- z̄mn ( k ) from the measuring platform and
the element ξ̄ ( p )i ( k )- x̄ i ( k ) in itself. The elements
in the platforms i ( i ∉ neighui ) are not required.

By the update weight P̄ i
x͂z͂ ( k )，the source loca⁃

tion information Sm ( k ) can be used to update the
predictive position estimate x̄ i ( k ) in a linear addi⁃
tion manner.
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x̂ i ( k )= x̄ i ( k )+ P̄ i
x͂z͂ ( k ) /P̄ z͂ ( k ) ( zmn ( k )- z̄mn ( k ) )

(21)

3. 2 Local covariance update

Inspecting Eq.（11），along with the whole posi⁃
tion estimate being updated，the whole covariance
matrix is also updated and the update increment is
the second term of Eq.（11）：KP̄ z͂ ( k ) K T. Expand⁃
ing KP̄ z͂ ( k ) K T，each block element is obtained as

ΔP ij ( k )= P̄ i
x͂z͂ ( k ) P̄ z͂ ( k ) ( P̄ j

x͂z͂ ( k ) )T (22)
Hence，each covariance item is updated as fol⁃

lows
P̂ ij ( k )= P̄ ij ( k )- ΔP ij ( k ) (23)

For each platform i，once receiving the loca⁃
tion information， all the update weights
P̄ j
x͂z͂ ( k )，j ∈ neighui are available. Then，the covari⁃
ance update increment ΔP ij ( k ) can be obtained by
Eq.（22），and the covariance terms P̄ ij ( k ) are updat⁃
ed as Eq.（23）. However，for the covariance items
P̄ ij ( k )（j ∉ neighui），they are unchanged. It should
be pointed out that the update results need not to be
feedback to the up⁃neighbors. For example，in the
case of the communication topology as：
1 → 3 → 2 → 4，the update progress of the covari⁃
ance element is shown in Fig.1，where for each plat⁃
form，the elements in the dashed line remain un⁃
changed. For symmetry， i. e.， P ij ( k )= P T

ji ( k )，
when the current unchanged elements are required
in the future，they can be obtained by the transposi⁃
tion.

3. 3 Algorithm procedure

For each platform，the procedure throughout
CL is shown in Fig.2.

Assume that platform 1 detects platform 2 and
obtains the relative measurement z12. By communi⁃
cating with platform 2（Fig. 3），platform 1 gener⁃
ates the source location information S 1 ( k ). The

complete procedure is provided in Algorithm 1.
Algorithm 1 Generating the source location

information（in the measuring platform 1）
（1） Calculate A 11 according to A 11 = P 11；

Calculate ξ̄ ( p )1 ( k ) according to Eq.（18）.
（2）When the link to the measured platform 2

is established，platform 1 send the block element
A 11 to platform 2.

（3）Receive ξ̄ ( p )2 ( k ) corresponding to platform 2.
（4）Calculate ζ̄ ( p )12 ( k )，z̄12 ( k ) by Eqs.（6），（7），

respectively.
（5） Calculate P̄ z͂ ( k )，P̄ 1

x͂z͂ ( k ) by Eqs.（8），

（14），respectively.
（6）Update the predictive estimatex̄ 1according

to Eq.（21）；update the local covariance item accord⁃
ing to Eqs.（22），（23）.

Fig.1 Relation between the covariance element update and
communication topology

Fig.2 Flow chart of CL

Fig.3 Mutual communication progress between the measur⁃
ing and measured platform for the source location in⁃
formation generating
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（7）Pack the source location information S 1 ( k )
and send to platform 2.

For the receiver i，when it receives the location
information Sin from its neighbor in，its predictive
position estimate is updated as Algorithm 2.

Algorithm 2 Utilizing the location informa⁃
tion（in the receiver i）

（1）Calculate ξ̄ ( p )i ( k ) according to Eq.（18）.
（2）Calculate P̄ i

x͂z͂ ( k ) according to Eq.（20）.
（3）Update the predictive statex̄ iaccording to

Eq.（21）；update the local covariance item accord⁃
ing to Eqs.（22），（23）.

（4）Add A i，P̄ i
x͂z͂ ( k ) to S in. Pack the location in⁃

formation Si and send to its neighbor.
The UKF⁃DCL algorithm is constituted by Al⁃

gorithms 1 and 2，where the progress is given from
the perspectives of the sender and receiver，respec⁃
tively. Since the usability of the location information
is not confined to a specific object，the sender does
not need to know which platform receives its loca⁃
tion information. Correspondingly，the receiver can
also handle the location information from any plat⁃
forms. It means that any serial communication topol⁃
ogies where the path from the measuring platform to
the measured platform acts as the starting is enough
for the UKF⁃DCL. As shown in Fig.4，for a group
of N platforms，theoretically，there are ( N- 2 ) ⋅
( N- 1 ) ⋅ ⋯ ⋅ 2 ⋅ 1 serial communication topologies
suitable for the UKF ⁃ DCL. Each topology needs
not to be prescribed in advance，and the UKF⁃DCL
is self⁃adaptive.

4 Simulation

The Matlab is adopted for the simulation. As⁃
sume that four platforms A1，A2，A3，A4 move in

the same area along four ideal circulars. A1，A3，A4

are counterclockwise and A2 is clockwise. The lay⁃
out of four platforms is shown as Fig. 5，where the
initial positions of the platforms are known and
marked as“•”. The simulation parameters are set as
Table 1.

In addition，the simulation scheme is designed
as follows：（1）At each moment，only one relative
distance measurement probably occurs among the
platforms and the occurrence probability is set as
p= 0.5.（2）The setting of communication topolo⁃
gy is that the relative distances among the platforms
are changing. Assume the platform can only commu⁃
nicate with its closest neighbor（it can be calculated
by the distance formula）. The communication topol⁃
ogy is dynamically generated.

Three aspects are verified by the simulation，
that is，whether the UKF⁃DCL has the basic coop⁃
erative capacity，whether the proposed UKF ⁃DCL
is equal to the centralized one，and whether the
UKF⁃DCL is self⁃adaptive to the time⁃varying com⁃

Fig.4 Illustration of all the communication topologies suit⁃
able for UKF⁃DCL

Fig.5 Motioning layout of four platforms

Table 1 Simulation parameter setting

Item
Simulation time / s
Sample step / s
Linear velocity / (m · s−1)
Measurement noise of linear velocity /
(m · s−1)2

Rotational velocity / (rad · s−1)
Measurement noise of rotational veloci⁃
ty / (rad · s−1)2

Measurement noise of relative distance/
m2

Value
400
0.5
1

N(0,(0.5)2)

0.015

N(0,(10−3) 2)

N(0,1)
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munication topology.
The results of the estimated trajectories under

different algorithms are contrasted in Fig. 5，where
the black line represents the actual trajectory，the
red one represents the estimated trajectory from the
independent localization（IL），and the green one
represents the estimated trajectory from the UKF ⁃
DCL algorithm. It can be found that the estimated
trajectories based on UKF⁃DCL are much closer to
the actual trajectories than IL. It indicates that the
proposed UKF ⁃DCL has the cooperative capacity，
that is，the local relative measurement improves the
whole localization accuracy.

In Fig. 6，under IL，UKF ⁃ DCL and UKF ⁃
CCL，the distance errors between the estimated po⁃
sition ( x̂ i，ŷ i ) and the actual position ( xi，yi )，i. e.，
Err_d= ( x̂ i ( k )- xi ( k ) )2 +( x̂ i ( k )- yi ( k ) )2，
are compared for the four platforms. The error
curves of UKF⁃DCL and UKF⁃CCL are completely
coincident，which indicates that the proposed UKF⁃
DCL has the same localization performance with
UKF⁃CCL（the gold⁃standard benchmark）.

In Fig.7，with different probabilities of relative
measurement occurring，the average distance error
is contrasted. The overall positioning accuracy is im ⁃
proved with the increasing number of the relative
measurements.

In Fig.8，the communication topologies（here，

determined by the distance） at each moment is
shown，where the probability of the relative mea⁃
surements occurring is set as p= 0.05. The commu⁃
nication topology among the platforms is not fixed.
The proposed UKF ⁃DCL algorithm can self ⁃ adapt
to the dynamic communication topology.

5 Conclusions

Based on the UKF framework，how to imple⁃
ment DCL oriented to the unpredicted communica⁃
tion topology is studied. The character of the look ⁃
up Cholesky decomposition is exploited for the cova⁃
riance matrix decomposing，which is key for the dis⁃
tributed U transformation. By this method，the dis⁃
tributed U transformation can be completed in each
platform successively according to the available
communication topology. By the proposed method，
the requirement of the single platform on the global
information is avoided. Each platform can update its
position estimate and the covariance item related to
itself independently. Hence， the demand on the
communication path is reduced. The proposed algo⁃

Fig. 6 Comparison of distance errors of four platforms un⁃
der different algorithms

Fig. 7 Comparison of the average of distance errors about
four platforms with different measurement probabili⁃
ties

Fig.8 Illustration of one time⁃varying communication topol⁃
ogy suitable for UKF⁃DCL
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rithm is adaptive to any serial communication topolo⁃
gies where the path from the measuring platform to
the measured platform acts as the starting path. So
the adaptability to the bad communication environ⁃
ment is improved.

It should be noted that the derivation is pre⁃
mised on the scene where only one relative measure⁃
ment occurs at a certain moment. For the case
where multiple relative measurements happen simul⁃
taneously，it should be further investigated.
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