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Abstract: A sufficient sample size of monitoring data becomes a key factor for describing aircraft engines state.
Generative adversarial nets（GAN） can be used to expand the sample size based on the existing state monitoring
information. In the paper，a GAN model is introduced to design an algorithm for generating the monitoring data of
aircraft engines. This feasibility of the method is illustrated by an example. The experimental results demonstrate that
the probability density distribution of generated data after a large number of network training iterations is consistent
with the probability density distribution of monitoring data. The proposed method also effectively demonstrates the
generated monitoring data of aircraft engine are in a reasonable range. The method can effectively solve the problem of
inaccurate performance degradation evaluation caused by the small amount of aero‑engine condition monitoring data.
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0 Introduction

The engine，as the heart of an aircraft，is a
complex and highly integrated system. A major
problem facing airlines and manufacturers is how to
improve operation reliability of aircraft engines. Be‑
cause of monitoring costs and environment restric‑
tions，minimal monitoring data are available，lead‑
ing to some uncertainties. It is difficult to meet the
the requirements of accurate assessment for health
management［1］.

At present， condition monitoring is the key
component of aircraft engine health management.
Wang et al. conducted a reliability evaluation meth‑
od to analyze competing failures for aircraft en‑
gines［2］. Sun et al. predicted future engine health
conditions by using bias state estimation and predic‑
tion formulas in a comprehensive evaluation［3］. Jak‑
linski provided an analysis of the aircraft engine dual‑
control system during failure conditions. The design
and control algorithms are insusceptible to a single
sensor failure［4］. Yu et al. described the decision

method with uncertainty interval information for the
condition monitoring of aircraft engines［5］. Liu et al.
discussed the correlation between multiple degener‑
ate quantities through the copula function family and
fused the edge distributions to obtain the joint distri‑
bution function of the remaining life. A lifetime pre‑
diction method based on the copula function with
multiple degenerate quantities was proposed［6］.
However，these methods are based on small sample
data. Data regeneration technology is an effective
way to solve the problem of insufficient data. Zhang
et al. provided synthetic data generation for end ‑ to ‑
end thermal infrared tracking［7］. Wang et al. estab‑
lished the white light emitting diode（WLED）appli‑
cation of a simulation data generation platform of
light sources’colour characteristics［8］. Huang et al.
provided a multi ‑pseudo regularised label for gener‑
ated data in person re‑identification［9］. In this paper，
for the limitation of monitoring data，a data regener‑
ation technology based on the generative adversarial
nets（GAN）model is proposed.

GAN，as one of the frontier research direc‑
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tions in the field of artificial intelligence，was pro‑
posed by Goodfellow et al. ［10］in 2014. GAN is
widely used in image and visual field research，
which can generate digital faces，and other objects.
GAN can form various realistic indoor or outdoor
scenes，restore original images from image segmen‑
tation and add colour to black ‑ white images［11‑12］.
GAN can generate object images from object con‑
tours and produce high‑resolution images from low‑
resolution images［13］. Additionally，GAN has been
applied to processing language speech［14‑15］，moni‑
toring computer viruses［16］ ，studying chess game
programs［17］，and other issues. For intelligent fault
identification of mechanical failure modes，GAN
has extracted the characteristics of mechanical fault
vibration signals，expanded fault samples，and im‑
proved the accuracy of fault identification［18］. Using
the GAN method has realized traffic data genera‑
tion，traffic modelling，traffic prediction，and traf‑
fic control in parallel transportation systems，and it
has provided specific algorithms for implementing
parallel‑transportation systems［19］.

The GAN principle is equally applicable to
aero ‑ engine condition monitoring. The previously
mentioned characteristics of the GAN method are in
line with the characteristics of aircraft engine condi‑
tion monitoring. GAN is an effective way to gener‑
ate enough data for deep analysis and learning.
When the condition monitoring data of aircraft en‑
gines are too minimal to accurately predict perfor‑
mance degradation，enough monitoring data can be
produced by using the GAN model. In this paper，
the GAN model is designed for data regeneration，
aiming at the health monitoring data of aircraft en‑
gines. The design algorithm is used to achieve data
regeneration，and the accuracy of the data is veri‑
fied.

1 Condition Monitoring for Air⁃

craft Engines

1. 1 Condition monitoring parameters

Engine performance degradation usually re‑
flects monitoring parameters. Condition monitoring
for these parameters is crucial. The gas path system

is the core of the aircraft engine and includes a pres‑
sure machine，a chamber，and a turbine. Some ther‑
modynamic parameters of the gas path system can
effectively reflect changes in engine state perfor‑
mance. Lubrication oil monitoring data are used for
lubrication system components and the condition of
sealing systems，thereby playing an important role
in machine wear monitoring and fault diagnosis. Vi‑
bration monitoring is observed through the rotation
of the engine rotor including vibration signals from
fault. Mechanical wear is assessed by vibration mon‑
itoring［20‑22］. Fig.1 describes the condition monitoring
of aircraft engines.

1. 2 Characteristics of performance parame⁃

ters

Performance degradation can be comprehen‑
sively described by the exhaust gas temperature mar‑
gin（EGTM），oil pressure deviation，high‑pressure
rotor speed deviation，fuel consumption deviation，
low ‑ pressure rotor vibration deviation，and high ‑
pressure rotor deviation. Some correlations exist
among these performance parameters. For instance，
some parameters，such as EGTM［23］，are more sen‑
sitive than others. These parameters are monitored
to analyse the cumulative degradation of engines.
Although aircraft engines involve multiple perfor‑
mance monitoring parameters，EGTM is one of the
main reference parameters of engines in the actual
operation process of airways. When EGTM de‑
clines to the threshold，the airline company replaces
the engine. The other performance monitoring pa‑
rameters are used as auxiliary references for engine
health conditions.

Fig.1 Main content of aircraft engine performance
monitoring
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1. 3 Analysis of the sample size of performance

parameters data

The health monitoring of aircraft engine is
based on the precise monitoring model and enough
reliable data. An aircraft engine degradation pattern
includes normal performance degradation and fault ‑
caused degradation. The performance is not the
same degradation model of different engines. The
rate of declining varies with the operating environ‑
ment and time on wing. Therefore，it is difficult to
precisely define the degradation model of an aircraft
engine.

However， the condition monitoring data is
from different collection environments. The accura‑
cy of the collected data cannot be guaranteed，and
the distributions of different condition monitoring pa‑
rameters of aircraft engines are also different. There‑
fore，many condition monitoring data samples are
needed to reduce errors. In the present work，the
GAN model is used to generate a large amount of re‑
liable condition monitoring data. This method can
effectively address the insufficient sample size of the
condition monitoring data.

2 GAN Model of Generating Moni⁃

toring Data for Aircraft Engines

2. 1 GAN model for monitoring data genera⁃

tion

Generating condition monitoring data for air‑
craft engines requires the accuracy of the model.
First，the data generated by GAN need to meet
the sample size of the subsequent mining state fea‑
ture. Second，the generated data should be accu‑
rate and capable of smoothing the noise in differ‑
ent acquisition environments. In data generation
modelling，GAN can be constructed by two net‑
work models：generative（generator G） and dis‑
criminant（discriminator D） network models. The
framework sizes of networks G and D in GAN are
similar and based on multilayer perceptron neu‑
rons.

Fig.2 depicts the network structure of GAN.
In general，G and D can be developed by a neural

network algorithm. After repeating adversarial net‑
work training，GAN can generate condition moni‑
toring data，the distribution of which is similar to
the distribution of aircraft engine monitoring data.
The G model learns an approximate distribution of
monitoring data，and the monitoring data are dis‑
tinguished from the data generated using the D
model.

In GAN，random noise data（z）are added to
G，and big data are generated. The model G is a
map of noise data to generated data. The output G
（z） is similar to the monitoring data distribution.
The inputs of D are the generated and original condi‑
tion monitoring data. The D model outputs probabil‑
ity values to determine the quality of the generated
data.

2. 2 Design of generated data

In the GAN model，G generates a flow of data
samples，and D estimates the accuracy of the gener‑
ated data from G. Both G and D are part of the ad‑
versarial process. In this process，G and D are con‑
stantly learning，and GAN ensures that the learning
rates are consistent. If one of the learning rates of G
or D is faster or slower than the others，the training
process is no longer balanced. The loss function of
the slower learning rate model cannot decline. The
generated performance monitoring data are inaccu‑
rate. To take advantage of GAN for generating en‑
gine monitoring data，the feasibility of the method
using the example is verified. Then，GAN gener‑
ates a large volume of condition monitoring data，
which are used for data analysis. The design idea is
presented in Fig.3.

Fig.2 Network structure of GAN
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3 GAN Model Algorithm of Gener⁃

ating Monitoring Data for Air⁃

craft Engines

3. 1 Establishment of GAN objective function

In this section，GAN is constructed by a neural
network. The network training process of GAN is
as follows：x represents the condition monitoring da‑
ta，and z the noise data（generally Gauss or uniform
noise data），which are the inputs of G. After the
training of G，the output G（z）is similar to the con‑
dition monitoring data. Then，x and G（z）become
the inputs of D. D provides the input data with the
probability of the condition monitoring data. Further‑
more，G outputs the final generated data samples.

To describe the objective function of GAN，

The number of monitoring data is m. A sample train‑
ing set is S =｛x1 ，…，xm｝. In addition，the proba‑
bility density function is Pz（z）. Using a random vari‑
able z~Pz（z）can generate m noise samples｛z1，…，

zm｝. In conclusion，Eq.（1） presents the likelihood
function，in which θG and θD are the network model
parameters of G and D，respectively.

L ( x (1 ),…,x (m ),…,z (m )|θG,θD )=

∏
i= 1

m

D ( x ( i ) )∏
j= 1

m

( 1- D (G ( x ( j ) ) ) ) (1)

In accordance with the law of large numbers，
when m→∞，the experience loss approximates the
expected loss. Eq.（2） presents the log likelihood
function obtained by Eq.（1）. In Eq.（2），Pdata（x）de‑
notes the probability density function of the condi‑

tion monitoring data
log L ≈ Ex~Pdata ( x ) [ logD ( x ) ]+ Ez~Pz ( z ) [ log ( 1-

D (G ( z ) ) ) ] (2)
The adversarial modelling framework of the

generated condition monitoring data is directly ap‑
plied when the G and D models are multilayer per‑
ceptrons. Accordingly，G learns the distribution Pg
of the generated condition monitoring data. D maxi‑
mizes the probability of the generated condition
monitoring data from G and the original condition
monitoring data. As a result，G is trained to mini‑
mise log（1-D（G（z）））. In other words，G and D
play a two ‑ player mini ‑ max game with the value
function V（G，D），which is presented in Eq.（3）
minG maxDV (G,D )= Ex~Pdata ( x ) [ logD ( x ) ]+

Ez~Pz ( z ) [ log ( 1- D (G ( z ) ) ) ] (3)

3. 2 Convergence standard of GAN for the

monitoring parameters

The generator G implicitly defines a probability
distribution，Pg，because G is a map from the noise
z~Pz（z）to the sample G（z）. The goal is to maxi‑
mise V（G，D），as demonstrated in Eq.（4）. Both χ
and Ω are the integral spaces of the condition moni‑
toring and noise data，respectively.

V (G,D )= ∫χ P data ( x )log ( D ( x ) ) dx +
∫Ω Pz ( z )log ( 1- D (G ( z ) ) ) dz (4)

In accordance with the second term of Eq.（4），

Eq.（5）can be obtained by using the mapping rela‑
tion of x = G（z）

∫Ω Pz ( z )log ( 1- D (G ( z ) ) ) dz=

∫χ pg ( x )log ( 1- D ( x ) ) dx (5)

Then，Eq.（6） is obtained through Eqs.（4），

（5）.

V (G,D )= ∫χ [ P data ( x ) log ( D ( x ) )+
pg ( x )log ( 1- D ( x ) ) ] dx (6)

The values Pdata and Pg are nonzero functions
because the data distribution has been determined.
The final goal is to identify a function that causes
V（G，D） to arrive at the maximum. Therefore，
Eq.（7） can be obtained. The maximum point
D *

G（x）can be expressed by Eq.（7）

Fig.3 Monitoring data generation flow diagram of aircraft
engines
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D *
G ( x )=

P data ( x )
P data ( x )+ P g ( x )

(7)

The process of GAN can be further formalised
as a minimisation of C（G）by Eq.（8）

C (G )= maxDV (G,D )=

Ex~Pdata
é

ë
ê

ù

û
úlog P data ( x )

P data ( x )+ P g ( x )
+

Ex~Pg
é

ë
ê

ù

û
úlog P g ( x )

P g ( x )+ P g ( x )
(8)

For the stability of training，the training target
of GAN is different from that of the traditional neu‑
ral network algorithm. In the network training pro‑
cess，Pg remains close to Pdata，which is the conver‑
gence criterion of GAN for generating monitoring
data. The necessary and sufficient condition of the
global minimum in GAN is calculated in Eq.（9）

P g ( x )= P data ( x ) (9)

3. 3 Training GAN for aircraft engine condition

monitoring data

The net training process requires training G
first and then D to ensure a stable training process.
In the process of training GAN，G and D are dy‑
namic. The ideal condition expressed by Eq.（3） to
derive the optimal goal and train GAN is to optimise
D to some steps first，followed by G. In this meth‑
od，if G changes slowly enough，D can always be in
the vicinity of the optimal solution. Both G and D
have enough learning abilities and can achieve the
optimal point to generate optimal condition monitor‑
ing data. In accordance with Eq.（10），the optimal
target Pg can converge to Pdata

Ex~Pdata [ logD *
G ( x ) ]+ Ex~Pg [ logD *

G ( x ) ] (10)

4 Examples

For the performance degradation of aircraft en‑
gines，EGTM is the sensitive condition monitoring
parameter. Additionally，EGTM，as a critical pa‑
rameter，is commonly used in engineering practice.
Therefore，EGTM is selected to generate data by
using GAN. If GAN can generate valid EGTM da‑
ta，the other parameters are equally valid. This ex‑
ample provides a type of engine for an airline and its
13 200 cycles of EGTM data［24］. The EGTM failure
threshold is 30，and Fig. 4 depicts the performance

data.
The sample data of EGTM follows a normal

distribution. The generated data are estimated by
the 10 000 cycles of EGTM data，and the generated
data also follow a normal distribution. The probabili‑
ty density curve of the EGTM sample data generat‑
ed by GAN is presented in Fig.5.

To facilitate the analysis of the EGTM proba‑
bility density function，the whole training process is
illustrated in Fig.6.

In Fig. 6，the lower horizontal line z denotes
the domain of noisy data，and x refers to the domain
of sample data. The green curve shows Pg，which is
the probability density function of the generated
EGTM data. The black curve represents Pdata，

which is the probability density function of the origi‑

Fig.4 EGTM data

Fig.5 Generated EGTM data

Fig.6 Network training process of GAN

613



Vol. 36Transactions of Nanjing University of Aeronautics and Astronautics

nal EGTM data. The blue curve is the probability
function of the discriminant network.

In the training process，the discriminant net‑
work（blue line）can be trained and updated. Then，
D can distinguish between the data distribution of
EGTM data（black lines created by black points）
and Pg（green line）. In the final iteration，the discrim‑
inant network converges to Eq.（9）. Then，the dis‑
criminant network is fixed，and the generative net‑
work is trained. After updating G，the gradient of D
guides G（z）to the direction that is likely to be classi‑
fied as EGTM data. An equilibrium point is obtained
after enough training times. At this point，Pg is equal
to Pdata，and the generated data can be considered sim ‑
ilar to the original EGTM data. At the equilibrium
point，D and G cannot be improved further.

The generated EGTM sample data is displayed
in Fig.7. The volume of the generated EGTM data
is equal to 1 000. The average is 70，and the stan‑
dard deviation is 6. All of the generated EGTM data
exceed the threshold value. Thus，no failure data
are generated. In the analysis of the generated
EGTM data and the consideration of the actual situ‑
ation，abnormal data should be eliminated. Howev‑
er， in the results，all the generated EGTM data
meet the Pauta criterion.

The generated EGTM data are based on the
first 10 000 cycles of the EGTM data. Drawing a
comparison between the generated EGTM data and
the 10 200—13 200 cycles of EGTM data is possi‑
ble. Thus，GAN can predict the moves of EGTM.
The back propagation（BP）method is utilized to
predict the performance degradation trend of the
small sample data of EGTM and the relative ratio

between the data generated using GAN and the BP
method. Fig.8 depicts the 10 200—13 200 cycles of
EGTM data.

The generated data predict the trend of the
changes in the small sample data of EGTM. In com‑
parison with the traditional BP neural network，the
GAN method predicts a more accurate degradation
trend of EGTM. In Table 1，the range of the devia‑
tion percentage is 0.7%—5.0%. In conclusion，the
prediction data are reasonable. Hence，the quality of
the generated EGTM data is reliable.

5 Conclusions

This study presents a method for generating

Fig.7 Generated EGTM sample data

Fig.8 Generated EGTM sample data prediction

Table 1 Devotion of generated EGTM data and original

EGTM data

Cycle /
time

10 200
10 400
10 600
10 800
11 000
11 200
11 400
11 600
11 800
12 000
12 200
12 400
12 600
12 800
13 000
13 200

Generated
EGTM data /

℃
48.8
45.7
44.2
46.3
42.9
44.4
53.9
48.6
47.1
45.7
38.9
37.7
39.9
36.9
40.8
33.6

EGTM
data / ℃

48
45
46
46
42
46
53
48
48
45
38
38
39
36
40
32

Deviation

0.8
0.7
1.8
0.3
0.9
1.6
0.9
0.6
0.9
0.7
0.9
0.3
0.9
0.9
0.8
1.6

Deviation
percentage /

%
1.7
1.6
3.9
0.7
2.1
3.5
1.7
1.3
1.9
1.6
2.4
0.8
2.3
2.5
2.0
5.0
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condition monitoring data for aircraft engines based
on the theory of GAN. As a typical aircraft engine
condition monitoring parameter，EGTM is used to
verify the effectiveness of the proposed method.
The example demonstrates that the probability den‑
sity distributions of the EGTM and generated
EGTM are consistent. All the generated EGTM
data meet the Pauta criterion. For EGTM predic‑
tion，the generated prediction data are in a reason‑
able range，and the data generated using the GAN
method reflect the characteristics of small sample
monitoring data. This method can determine the in‑
herent variations of small sample data. Further，
GAN is an effective tool for solving the problem
of insufficient samples，and it can provide enough
and precise data to support performance degrada‑
tion.
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