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Abstract: As a prospective component of the future air transportation system，unmanned aerial vehicles（UAVs）
have attracted enormous interest in both academia and industry. However，small UAVs are barely supervised in the
current situation. Crash accidents or illegal airspace invading caused by these small drones affect public security
negatively. To solve this security problem，we use the back-propagation neural network（BPNN），the support-vector
machine（SVM），and the k-nearest neighbors（KNN）method to detect and classify the non-cooperative drones at the
edge of the flight restriction zone based on the cepstrum of the radio frequency（RF）signal of the drone’s downlink.
The signal from five various amateur drones and ambient wireless devices are sampled in an electromagnetic clean
environment. The detection and classification algorithm based on the cepstrum properties is conducted. Results of the
outdoor experiments suggest the proposed workflow and methods are sufficient to detect non-cooperative drones with
an average accuracy of around 90%. The mainstream downlink protocols of amateur drones can be classified
effectively as well.
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0 Introduction

Nowadays， civil unmanned aerial vehicles
（UAVs） have played important roles in a wide
range of fields thanks to their remarkable operation
abilities under different working conditions and the
booming of the UAVs industry［1］. However，the un⁃
regulated small UAVs operations also cause more
problems especially in air traffic management
（ATM）due to the lack of standards and regulations
in the industry. The easy assembling processes of
consumer drones made of open-source components
worsen the situation. Meanwhile，very few users
are well-trained before their first flight. To address

those issues，the UAV traffic management（UTM）

system developed by FAA and NASA established
the framework aiming for amateur and industrial
drones to achieve flight management functions［2］.
Europe is also working on the drone management in
the U-space Project［3］ and researching the regulatory
framework for drone operations［4］. However，it re⁃
mains a challenge to implement effective detection，
classification，tracking，and countermeasures on the
unauthorized drones. The detection and classifica⁃
tion techniques for those drones are required urgent⁃
ly，especially at the edge of the restricted areas such
as airports，military bases，and sensitive facilities［5］.
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Several methods have been proposed for drone
detection summarized as the visual recognition，the
acoustic sensor，the active radar，and the RF signal
sniffing［6］. The computer-vision-based method main⁃
ly uses optical sensors，such as cameras and infrared
sensors，to capture the image of drones. This meth⁃
od is implanted by lots of drone defense companies
into their products［7］. However，the visual recogni⁃
tion highly relies on the visibility thus is only suit⁃
able for the line of sight（LOS）scenarios. The idea
of the acoustic-based method is to establish a data⁃
base of the acoustic characteristics of various drones
and adopt machine learning algorithms for pattern
match［8］. However，the acoustic method can be in⁃
terfered by the environmental noise and can be hard⁃
ly applied in noisy urban environment. Unlike the vi⁃
sual recognition，the active radar method relies on
the radar cross-section（RCS） to detect drones［9］.
The radar-based method is unstable due to the small
RCS of most drones. The RF signal sniffing using
low-cost RF sensors is applicable in the LOS envi⁃
ronment［10］. Considering most drones transmit their
data through the downlink，the RF-based method is
a promising method for detecting and classifying un⁃
authorized drones at the edge of the flight restriction
areas in complex environments.

This paper focuses on the detection and classifi⁃
cation of drones based on the RF signal using ma⁃
chine learning methods. Unlike existing research，
this work concentrates on the properties of the
downlink signal from drones. The detection and
classification experiments are conducted by using
the software-defined radio（SDR）based equipment
to collect real-time drone signals. Then the ceps⁃
trum feature engineering of the signal combined
with machine learning algorithms is conducted. The
signal from five drones under various signal-to-noise-
ratio（SNR）is used for detection and classification.
The environmental electromagnetic noise is speci⁃
fied as a WiFi signal collected from wireless devic⁃
es. Results in this test can hopefully provide insights
into a more comprehensive UTM system.

This paper is organized as follows. The typical
study configuration and the signal model of the
drone downlink are introduced in the first part of
Section 1. Its second part explains the cepstrum and

statistical features analysis on both the downlink sig⁃
nal of drones and environmental WiFi signals. In
Section 2，the experiments using collected outdoor
RF signals to validate the proposed method for
drone detection and classification are presented. At
last，in Section 3，concluding remarks and potential
future work are given.

1 Methods

1. 1 Typical study configurations and signal
model

To detect and classify non-cooperative drones
based on the RF signal，their downlink signal needs
to be analyzed. Therefore，this section introduces
the communication system of drones， the typical
study configurations and further explains the model
of the downlink signal. The study configuration in
this paper focuses on passive detection，as shown in
Fig. 1. The SDR-based equipment deployed at the
edge of an airport is a broadband receiver for moni⁃
toring the 2.4/5.8 GHz ISM frequency band. If a
drone is approaching the flight restricted area，the
broadcasting downlink signal would be captured by
this receiver. Afterward，the signal is processed and
analyzed to determine whether the drone is coopera⁃
tive or not. Once the signal of non-cooperative
drones is identified，the defense part of the UTM
system would issue an alert immediately. Further，
the classification of drone signals is conducted to
identify the downlink protocol of drones.

At present，there are two types of downlink
protocol for drones. Part of drones build downlink

Fig.1 Typical study configuration
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communication through a wireless local area net⁃
work（WLAN）directly using IEEE 802.11 proto⁃
col. In other words，drones with WLAN served as
an access point（AP） to connect the mobile station
and remote controller through WiFi. The other part
of the downlink protocols of drones are self-devel⁃
oped encrypted transmission protocol represented
by the DJI Lightbridge series and the DJI OcuSync
series. The main difference between these two
downlink protocols is that the WLAN-based down⁃
link uses the 802.11 protocol，which is a TCP con⁃
nection process with a three-way handshake［11］. For
airborne drones， the instability of communication
links is undesirable. If the connection is lost，the re⁃
connection through another three-way handshake
may take about 5—10 s. During the reconnection
both the ground station and the remote controller
lose the status information of drones，which can
lead to accidents. As comparison，drones using the
DJI Lightbridge or the OcuSync protocols can be
treated as APs with the UDP-like broadcasting con⁃
nection. To support real-time video streaming，this
downlink signal commonly chooses orthogonal fre⁃
quency division multiplexing（OFDM）modulation
to achieve a high-speed transmission in a 2.4/5.8
GHz frequency band［12］. Considering the sampling
rate of the receiver is Fs，downlink signal s（t） of
drones can be regarded as the sum of N points with⁃
in the Fs/2 band and expressed as

s ( t) = s ( kT s )= ∑
n= 0

N - 1

Anej2π( f0 + nΔf ) kT s (1)

where f0，∆ f，T s and An are the starting frequency，
the frequency interval，the sampling period，and the
signal amplitude at the corresponding frequency，re⁃
spectively. The time of one signal collection by the
receiver lk can be computed by lk = kTs，where k is
the number of the sampling periods. The downlink
signal of the drones uses the OFDM modulation and
the received signal in one symbol period can be ex⁃
pressed as

s ( t )=
ì
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（2）
where Dn is the data carried by the sub⁃carrier，and

rect（t）the rectangular window function with length
equal to symbol period time Tsig.

The initial time of symbol and data correspond⁃
ing to the sub-carrier are t0 and Dn，respectively. To
minimize the effect of the inter-symbol interference
（ISI） caused by channel delay，the guard interval
（GI） is plugged in between every two neighboring
symbols in the OFDM signal［13］. If the length of GI
is greater than the maximum delay in the communi⁃
cation channel，the ISI issue would not appear. Nor⁃
mally，GI is formed using the cyclic prefix（CP）by
copying the last Le data points to the front of the da⁃
ta block with the length of L. Here，L e refers to the
lenght of the end data. The downlink signal of
drones with CP during one symbol can be obtained
as
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where｛xp，xp−1，…，xp−L+1｝ is the original data of
one symbol，｛dp，dp−1，…，dp−L+1｝ the output da⁃
ta，｛h0，h1，…，hLe｝ the channel impulse，and｛np，
np−1，…，np−L+1｝the noise.

The downlink signal of drones adopting CP
shows strong periodic characteristics. The total du⁃
ration of a complete symbol is noted by Tsig. The to⁃
tal symbol duration noted by Tu is the sum of the
useful data duration，and the CP length is Tcp. In the
spectrum phase，the downlink signal of drones has
multiple orthogonal sub-carriers since the OFDM is
a multi-carrier modulation. The channel of each sub-

carrier can be approximated as a flat fading channel.
Hence，the signal indicates strong flatness property
in the spectrum domain to resist the multipath fad⁃
ing. Based on the analysis of the downlink signal，
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the characteristics of the signal structure can be ex⁃
tracted for detecting and classifying amateur drones.

1. 2 Cepstrum and statistical feature analysis

In this work，the chosen drones for downlink
signal collecting are the DJI Phantom3，the Mavic
Pro，the Mavic2 Pro，the Phantom4 Pro，and the
Mavic Air. The WiFi signal collected from wireless
devices is regarded as environmental noise. Table 1
shows all the corresponding downlink protocols.
The signal types used in this study are given in

Fig. 2. Feature engineering based on the above-col⁃
lected signal is conducted in this section.

1. 2. 1 Cepstrum analysis

According to Eq.（2），we can assume that the
received signal in the SDR-based equipment under a
typical scenario can be estimated using

r ( t )= s ( t- td ) ej2πfd t+ n ( t ) (4)
where n（t），td and fd are the Gaussian white noise，
the clock deviation，and the frequency deviation，re⁃
spectively.

The data block Dn in the kth modulated symbol
at the nth sub-carrier can be obtained from the sum of
the data dn. k in the kth modulated symbol at the nth
sub-carrier，noted as Dn= ∑ k

dn.k. We can suppose
Dn is independent and identically distributed with ze⁃
ro mean value and σ 2c variance. It is suggested the re⁃
ceived multi-carrier modulated drone signal with

noise can approximately conform to the complex
Gaussian distribution which is r（n）~Nc（0，σs2+
σn2）. The Gaussian feature is strongly correlated to
the periodicity of the signal. Thus，the cepstrum is
defined as the inverse Fourier transform of the loga⁃
rithmic signal spectrum and can be expressed as

c ( n )= F-1 { log|F { r ( n ) } | }=
1
M
∑
k= 0

M - 1

log|R ( k ) |ej
2πkn
M （5）

where M is the length of the sampled signal by the
data points，R ( k ) the discrete signal spectrum，and
r（n）the signal spectrum［14］.

According to the central limit theorem［15］，the
distribution of c（n）converges to the Gaussian distri⁃
bution if the length of the Fourier transform is long

Table 1 Protocol of signal

Type of signal
Phantom3
Mavic Pro
Mavic2 Pro
Phantom4 Pro
Mavic Air
WiFi

Type of protocol
WLAN

OcuSync 1.0
OcuSync 2.0
Lightbridge 2.0
Enhanced WLAN

WLAN

Fig.2 Signal of drones and environmental WiFi
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enough. Consequently，the mean and the variance
of the cepstrum are the main concern in this analy⁃
sis. Cepstrum is a sequence of complex numbers.
For effective analysis，the real part of the cepstrum
denoted by Real｛c（n）｝is used in the subsequent ex⁃
periments. Here the correlation coefficient of the re⁃
ceived signal is defined as

ρ r =
N u

N sig
⋅ σ 2s
σ 2s + σ 2n

（6）

where Nu and Nsig are the data points of the useful
symbol and the total symbol. The mean function of
the real part of the cepstrum can be derived in the
view of Appendix A.1 and A.2 of Ref.［14］，shown
as
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（7）

where Sy is the number of symbols within the single
signal frame，and γ the Euler constant. The experi⁃
mental results show that，as the subscript of the
cepstrum data sequence increases，the peak value
decreases gradually and cannot be searched effec⁃
tively. Thus，the theoretical value of real cepstrum
is processed as approximately zero when n is a larg⁃
er integer multiple of the useful symbol data points.
Based on Eq.（7），the mean function of the real part
of the cepstrum only peaks at the origin when the
signal is Gaussian noise. Once the collected signals
contain the downlink signal from drones，the mean
function of real cepstrum is supposed to be discrete
peaks at multiples of Nu after the maximum peak at
starting index. Fig.3 demonstrates the cepstrum and
spectrum details of the framed signal from the Ma⁃
vic Pro. It is found in Fig. 3（a） that the real ceps⁃
trum peaks at 0 and around 67 of the time index.
Then，we can simply estimate the useful data length

of the Mavic Pro is 67 μs. Discrete peaks after the
straining index are correlated to the periodic struc⁃
ture of the drone signal which is shown in Fig.3（b）.
Details of the Mavic Pro in the frequency domain
demonstrate a strong periodicity.

1. 2. 2 Statistical feature analysis

The previous description indicates that the
downlink signal of drones contains multiple sub-car⁃
riers presenting orthogonality with each other.
Therefore，each sub-carrier can be treated as a ran⁃
dom process with independent and equal distribution
from the perspective of random variables，which fol⁃
lows Gaussian distribution in the time domain.
Since the value of the high-order cumulant extracted
from the signal is supposed to be near to zero，the
more sub-carriers be contained， the stronger flat⁃
ness characteristic appearing within the spectrum
band and the smaller high-order cumulant should be.
The fourth order cumulant is studied in this paper.

Assume that｛x1，…，xk｝ is a random sequence
consisting of k continuous variables and its joint
probability density function is denoted by f（x1，…，

xk）. The first joint characteristic function can be ex⁃

Fig.3 Cepstrum and spectrum details of drone signal
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pressed as
ϕ (w 1,…,w 2 )= Ε [ ejWX ]=

∫⋯∫f ( x 1,⋯,x2 ) ej(w1 x1 +⋯+ w2 x2 )dx1…dxk (8)

The sth-order moment can be obtained based
on the characteristic function，shown as

ms1,…,sk= Ε [ xs11,⋯,xskk ]=

(-j)s ∂ϕ (w 1,…,wk )
∂ s1w1,⋯,∂

sk
wk

| w1 =⋯= wk= 0 (9)

The sth-order cumulant of the random se⁃
quence is given as

cs1,…,sk= cum { x
s1
1,⋯,xskk }=

(-j)s ∂
s lnϕ (w 1,…,wk )
∂ s1w1,⋯,∂

sk
wk

| w1 =⋯= wk= 0 (10)

Accordingly，the（p+q）th-order moment and
the cumulant are obtained by extending Eqs.（9，10）
to generalize zero-mean stationary random signal
｛xt｝. The moment and the cumulant can be comput⁃
ed using

mp+ q,q= Ε { xp ( x * )q } (11)

cp+ q,q= cum{ x,…,x
p

,   x *,…,x *
q

} (12)

The fourth order cumulant of signal X（t）=

｛xt｝can be computed by using
c42 ( τ1,τ2,τ3 )= cum [ X * ( t ),X ( t+ τ2 ),X * ( t+ τ3 ) ]

(13)
where τ refers to the delay of the signal［16］. In the fre⁃
quency domain，the statistical features property is
also investigated. The power spectrum is estimated
by the periodogram expressed as

Ŝx (ω )=
1
M | ∑

k= 0

M - 1

x ( k ) e-jωk |
2

(14)

where x（k）is the kth data points of the framed sig⁃
nal，and Ŝx the estimated power spectrum. By using
the bandwidth estimation，the bandwidth B can be
obtained by B = fH − fL，where［fL，fH］is the effec⁃
tive frequency band. Then the normalization is con⁃
ducted using

Snorm (ω )=
Sx (ω ) | fL ≤ ω≤ fH

∑
B

Sx (ω )
(15)

Based on Eq.（15），the Kurtosis coefficient rep⁃

resenting the flatness within the band can be ex⁃
pressed as

Ku= Ε [ Snorm (ω )- Ŝnorm (ω ) ]4
σ 4norm

(16)

where σnorm is the variance of the spectrum within the
band［17］.

According to the properties mentioned above，
the collected signal of drones and the WiFi signal is
split into a single frame to form the corresponding
characteristic vector（CV），shown as

CV=[Tu,Δf,c42,B,Ku ] (17)
where Tu is the total symbol duration，∆ f the fre⁃
quency interval，B the bandwidth，and Ku the Kur⁃
tosis coefficient.

With statistical features analysis mentioned
above，the collected signal of drones and WiFi sig⁃
nal are split into single frame to form the correspond⁃
ing characteristic vector. Afterwards， the training
and test are conducted using different machine learn⁃
ing algorithms for drone detection and classification.

2 Experiment and Result

To validate the proposed method，the detec⁃
tion and classification experiment on identifying five
different drones from ambient WiFi signals is con⁃
ducted. The goal of the detection experiment is to
determine whether an unknown drone exists in the
current environment and whether the non-coopera⁃
tive drone is trying to approach the flight restriction
zone. At the experiment site， a passive receiver
with monitor bandwidth of 2.4/5.8 GHz frequency
is placed at the edge of the restriction area. The
overall workflow in this study is shown in Fig.4.
The signal samples for training are collected in an
ISM-free environment. The signal samples for the
detection and classification experiment are captured
in the outdoor environment which is demonstrated
in Fig.5. For each type of drones，we have collected
about 500 GB of data for training. Depending on the
length of the signal frame， the number of single
frame signal varies from 60 000 to 110 000. The to⁃
tal amount of WiFi signals is around 10 000. Then
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noise under various SNR is added into the received
signal samples to generate the test vectors. With the
well-trained discriminant model，drone signals are
detected to issue an alert of the non-cooperative
drone invading. Then the classification for drones is
done by identifying the downlink protocols.

We use three machine learning methods for the
drone classification. The configurations of each
method are as follows. The back-propagation neural
network（BPNN）has four layers：One input layer，
two hidden layers and one output layer. The number
of the neural unit of hidden layer is three. We select
the ReLu function as the activation function and the
softmax function to process the output. For the sup⁃
port-vector machine（SVM） method，the penalty
term C is 10，the radial basis function（RBF）is se⁃
lected as the kernel function，and the weight factor
is set to be balanced. The setting of the SVM meth⁃
od can be summarized as SVM（C = 10，RBF，
balanced）. As for the k-nearest neighbors（KNN）

method，the number of nearest neighbors k is 5，the
Minkowski distance factor is 2，and the weight fac⁃
tor equals to the reciprocal distance. The selected
parameters can be summarized as KNN（k = 5，
Minkowskip = 2，σ/Dist）.

2. 1 Drone detection experiment

Suppose that St =［Nt，，Dt］represents testing
sets where Nt are the labels for noise and Dt the sig⁃
nal of drones，respectively. Fig. 6 manifests the de⁃
tection results based on the captured signal samples
in the outdoor environment with SNR from −5 dB
to 5 dB. The accuracy of each machine learning
method is defined as the percentage of the signal of
drones being correctly classified and can be ex⁃
pressed as Accuracy = Num（Dr）/Num（Dt），

where Num（·） is the number of the label for the
property vectors and Dr the signal of all drones deter⁃
mined by the discriminant model.

Results show that the proposed scheme can ef⁃

Fig.4 Workflow of detection and classification on drones

Fig.5 Outdoor experiment

Fig.6 Detection results of three models
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fectively identify the five types of signals of drones
out of the environmental WiFi signals. Especially
for the Phantom3 drone which uses WLAN as the
downlink transmission protocol，the average detec⁃
tion accuracy rate is around 90%. Since the Mavic
Air with enhanced WLAN uses a signal-relay de⁃
vice in the remote controller that converts the
WLAN signal to DJI’s self-developed protocol，its
signal can be identified efficiently too. Among all
the algorithms，the BPNN performs better than oth⁃
ers. This is due to the lazy learning strategy that
both the KNN and the SVM are adopted. The
SVM has a better accuracy than the KNN method，
because the KNN makes decisions based on global
samples. However，the number of samples of differ⁃
ent drone signals is unbalanced in this paper，which
means that the accuracy of the SVM is supposed to
be higher than that of the KNN.

2. 2 Drone classification experiment

The classification phase aims to recognize the
type of drones by identifying downlink protocol after
detecting noncooperative drones. As mentioned
above，Dt and Dr are the sampled and the recog⁃
nized labels of the drone signals. We can assume
that vector D consists of all the five types of label
vector of drone signals and is expressed as D =

［dph3，dp4p，dmp，dm2p，dmair］. The classification rate
is defined as

C_Rate= Num ( d r_drone )
Num ( d t_drone )

(18)

where d t_drone represents the true type of label vector
of drones，and d r_drone the recognized type of label
vector of drones.

The classification results are demonstrated in
Figs.7—9. Results show that the drones can be iden⁃
tified from each other in most cases. The only excep⁃
tion is to distinguish between the Mavic2 Pro and
the Mavic Pro. The reason is that different OcuSync
protocol versions only have minor changes from
structure to modulation of the downlink signal. The
classification accuracy of the BPNN is supposed to

be the best since it is a more advanced learning
method.

3 Conclusions

This paper presents a method of detection and
classification of amateur drones based on their ceps⁃
trum and features properties of the downlink signal.
Outdoor experiments are conducted to validate the
effectiveness of the proposed method. Analysis of
the experimental results suggests that the test of de⁃
tection and classification using the BPNN outper⁃
forms the KNN and the SVM. All the three ma⁃
chine learning algorithms achieve overall average de⁃
tection accuracy about 90% and work well in the

Fig.9 Classification results of BPNN

Fig.7 Classification results of KNN

Fig.8 Classification results of SVM
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classification phase. For future work，analysis on
the comprehensive modeling of the noise signal is
necessary.
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一种基于射频信号倒频谱的民用无人机识别和分类方法
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摘要：由于监管不利，由小型无人机引起的扰航及空域非法入侵等事故对公共安全造成了不良影响。为了解决

此问题，本文使用反向传播神经网络算法、支持向量机算法和 K⁃近邻算法对位于禁飞区边缘的无人机的下行信

号倒频谱进行识别和分类。在户外实地实验中收集了电磁静默环境下 5种不同民用无人机的下行信号，并对这

些信号进行了倒频谱分析。结果显示，本文提出的工作流和实现方法在非合作无人机的识别和分类方面取得了

较好的效果，尤其在无人机识别方面，3种机器学习算法的平均准确率均可提升至近 90%。

关键词：无人机识别；射频信号；倒频谱；机器学习
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