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Abstract: A heuristic theoretical optimal routing algorithm (TORA) is presented to achieve the data-gathering
structure of location-aided quality of service (QoS) in wireless sensor networks (WSNs). The construction of
TORA is based on a kind of swarm intelligence (SI) mechanism, i.e. , ant colony optimization. Firstly, the ener-
gy-efficient weight is designed based on flow distribution to divide WSNs into different functional regions, so the
routing selection can self-adapt asymmetric power configurations with lower latency. Then, the designs of the
novel heuristic factor and the pheromone updating rule can endow ant-like agents with the ability of detecting the
local networks energy status and approaching the theoretical optimal tree, thus improving the adaptability and en-
ergy-efficiency in route building. Simulation results show that compared with some classic routing algorithms,
TORA can further minimize the total communication energy cost and enhance the QoS performance with low-de-
lay effect under the data-gathering condition.
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INTRODUCTION

Data-gathering is a critical operation in wire-
less sensor networks (WSNs) for extracting the
useful information from the operating environ-
ment to the base station sink. Constrained by the
limited and non-replenished energy resources,
minimizing energy consumption is regarded as a
major performance criterion to provide the maxi-
mum network lifetime in WSNs. Technologies
used to balance the energy consumption in net-
works are universally accepted as a key factor for
prolonging the lifetime"' ), However, without the
geographic information support, the periodic low-
rate data flooding throughout the network would

cost lots of energy. Therefore, many current re-
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searches™® focus on energy optimizing location-
aided routing protocols with both low power and
fault tolerance to overcome the above disadvan-
tages. And the core technologies in above re-
searches are realized by efficiently using geo-
graphic-aware information to limit the new route
search into a smaller "request zone”, which is esti-
mated according to the prior position and the mo-
bility information of destination, thus conserving
more energy. The size of the "request zone” is too
large if the obtained information is inaccurate. To
solve the above problems, the greedy perimeter
stateless routing (GPSR)' is proposed to utilize
the greedy decisions forwarding perimeter-mode
packets in a derived simple planar graph. The en-

ergy of those nodes on the planar graph should be
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quickly depleted for concentrated traffic on the
promiscuous listening mode. The above routing
problems can be proved by NP-hard. Swarm in-
telligence, which is the emergent collective intel-
ligence of groups of simple agents, is an efficient
way to solve the concerned problems. Swarm is a
population of interacting individuals, which con-
tributes to optimize some global objectives via col-
laborative operations. As an important research
domain of swarm intelligence, ant colony opti-
mization (ACO) is a constructive meta-heuristic
optimization method and has been successfully
used to build energy-saving routing®'". In the
process of routing construction in WSNs, ant-like
agents concurrently and asynchronously build op-
timal solutions via applying a stochastic local de-
cision policy and using pheromone trails and
heuristic information. However, those swarm in-
telligent themes only put emphasis on the posi-
tive-feedback mechanism to search optimization
and have made some modifications to fit different
network types, which cannot satisfy the special
characteristics of WSNs. This paper proposes a
heuristic theoretical optimal routing algorithm
(TORA). In the algorithm. prior theoretical re-
sults can be combined with the swarm intelli-
gence-inspired mode to further enhance the ener-

gy-elficiency of routing construction in WSNs.

1 SYSTEM MODEL

WSNs can be represented by a weighted
undirected graph G=(V,E,W), where V and E
represent the set of nodes and links in G respec-
tively, while W denotes the set of weights with
ECG. Each link<li,;j> € E is associated with a
delay parameter D_; . €W and the total delay re-
quirement for QoS is set as Dryreciod. In WSNs,
the energy consumption of sensors should be un-
balanced for the asymmetric traffic distribution in
data flow. In the data-gathering routing rooted at
sink, the energy cost of each sensor is related
with its own locality hierarchy in the tree struc-
ture. If the geographical position of sensor is
closer to the sink, its hierarchy in the tree struc-

ture and its corresponding energy cost are higher

due to the large amount of data aggregation. Ac-
cording to the above analyses, WSNs are divided
into three categories of functional regions accord-
ing to the event radius (ER) model" with dispar-
ity in the energy cost caused by the unbalanced
streams distribution. In the ER model, events are
sensed by a subset of nodes V,CV, i.e. the data-
sensing region. The data-merging region V.CV is
defined as a disk centered at sink with radius dsica
denoting the critical distance of the V. boundary
from the sink. And the sensors in V,=V—V_ UV.
compose the data-relaying region. It is assumed
that each sensor node maintains the information
of a cache storing neighborhood and the self-ad-
dress obtained by GPS and known by sink as a
priori, and each artificial ant @, (k=1,2,++,|V,])
has a memory M*, whose components are denoted
in Table 1.

Table 1 Definition of components in M*

Component Definition
dant Distinguishing ant agent from data packet
b Taboo list recording the path L built by
ap
Chop Number of accumulated hops
R; Remaining energy level of n; € p,

The current feasible neighborhood of a, is
defined as Ax=V—L)N0OY, where O is the
set of neighbors in n,. Via the functional region
division of sensor networks and the ability of ant
memory, the artificial ant can roughly estimate
the energy-cost-level of each reached sensor and
correspondingly adjust the weight in heuristic in-
formation of routing selection to improve the reli-
ability of data-gathering tree.

Let R, = E{"/E, which denotes the re-
maining energy level of n, € V. The routing tree
problem Z is defined to find a series of optimal
paths tpu= {pi } |+ from V. CV to destination

sink subjected to the following conditions

m

LSRR =R

C

.1,np,,16 b
Pl € tan CG @D)
D(p,) = Z D_; j~ < Drpeshold (2)
<ij>€p,
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Eqgs. (1,2) are constraint conditions for QoS re-
quirement of energy optimization and temporal
consistency, where R (p; ) denotes the average
remaining energy ratio of optimal path p; ., 5 a
NP-hard constrained path optimization (CPO)
problem and solved by Lagrange multiplier (LM )
algorithm. The Lagrange function is described as
L(psA,D) =R(p) + ALD;, — D(p)]
D; € [0sDryreshold ] (3)
The solutions can be obtained by calculating
the partial differential of Lagrange function ma-
trix, but it is not suitable for the resource-limited
sensor nodes in WSNs. Therefore, this paper
proposes TORA algorithm to solve this primary
problem = with a fully distributed way in ACO
approach.

2 OPTIMAL ROUTING STRUC-
TURE

2.1 Design of heuristic factor

It is assumed that n,€ V sends | bit message
on multi-hop way to sink, which requires K —1
relay nodes and the ith hop distance d;, where
K shows the number of theoretic hops from
n, to sink. Based on the first-order-radio-mod-
el''?), the energy expended by relaying / bit mes-
sage over distance d; 18 Ereny (/s d;) = (2Eqe +
€ampd; ) X 1. Denoting that d (n,,sink) is the dis-
1) and

sink. The total cost on path from »n, to sink is

tance between the source n, (v € [1, |V,

K@

P l(d)= Z E.a.y (Isd;), which can be proved
i=1

as a strict convex function, and its minimal value
is only obtained under the condition that each hop
distance is equal to d$m=d (n,,sink) /K “ accord-
ing to Jensen's inequality. And then the optimal
hop-counts (Eq. (4)) is calculated by imposing the
derivative operation, i.e. »dPu(d;)/IK=0.

n

a,
o= Da, D)

where @, and @, are node energy parameters. We

K® = |_ d(n,,sink)

set vector /as the coordinate sequence of theo-
retical points, i.e., FV={n @)}, t€[1,.K].

The rectangular coordinates of each theoretical

point for minimal P is deduced as follows

()Y () (v)
xoptim(chop) =T, + Chop M doptim M

sink — Yo

cos [arctan M}
Lsink — Xy

(v) (v) (v) (5)
yopxim(clx()p) =V + ch(;p * dnp/lim *

. sink ,

sin [arctan y“miyl}
Lsink — Lo

At ¢}, the distance-error between theoreti-
cal optimal sensor and actual counterpart is calcu-
lated by Eq. (6).

Ad;Ceidy) = Lo, — xGim (i) P4 Ly — yéstim Ceidy ) I
(6)

Defining that triple S=(B,R,H) is the cur-
rent state obtained by the ant agent for next hop
selection, i. e., during the process of routing
building, the bias B, the remaining energy level
R and the hop counts H are taken into account.
Assuming that state vector §$;=(B;.R;,H;) €S,

and each tuple of §;is defined as follows

B; = Ad;(ei)) D)
R]- _ E](_lc[)/E;inD (8)
H;, = c) (9

where B, provides the location-aided energy-effi-
ciency information for the process of path building
and helps ant agent to adjust the forward direc-
tion to sink based on the bias value. R; shows the
energy status of n; and H; the hops of ant agent
to reach the source node through node n;. With
the accumulation of hop-counts, the probability
of reached n;belonging to data-merging region V.
increases and the higher energy consumption is
consequently expended. Therefore, according to
the distribution trait of energy cost in routing
tree, the relationship between each tuple in S is
defined as Eq. (10), which indicates that the clos-
er the current sensor to sink, the larger the
weight of remaining-energy-level regarded as en-

ergy efficiency factor.

w, = (H.R)/B,

The cost @, €W is associated with each n; €

n, € Ax (10)

Ak as local evaluation information for node ro-

bustness. The higher the value of w;, the greater
the probability that »; is selected as the next hop

node on the building of optimal routing path. If
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kzargmax”le,‘K {w,;}, the ant at current sensor n,
tends to choose n,as the next hop sensor. There-
fore, the structure of heuristic factor for ACO is

designed as

7, =@ n; € Ag an

Eq. (11) embodies the idea that artificial ant

can adaptively choose the high-energy-efficient
sensor as its next hop in each step and adjust cor-
responding variable weight to improve the relia-
bility of data-gathering tree. In two extreme cas-
es, i.e., if H,=0or E/*"=0, then 7,0, which
indicates that n; belongs to data-sensing region
(n;€V,),or it runs out of energy, then the ant a-
gent should abandon the selection of n;, during the

path building.
2.2 Algorithm flow

At the initial stage of TORA, the optimal
routing tree t,. 1 empty and each sensor in V,C
V takes sink as common destination. The sink in-
structs sensors in V, to create ant-like agents for
constructing optimal routing paths and compute
the corresponding theoretic point sequence 7.
The above task is sent by "interest”, which also
contains the address coordinate of sink, i. e.,
(Zank s Yink ) » and propagates through the network
to V.. The ant dispatched from sensor n, &V, is

forw

denoted as ay

W

In each step, af™ chooses the

next unvisited node in current feasible neighbor-
hood with the improved transition probability giv-

“ € Ly from

en by Eq. (12) and constructs p
source to sink, if it does not meet any sensor
which has been added to #nu.

[z [,
PN AONIL

me Ay

sz(t) =

a2z

When a™ arrives at sink, the corresponding

back

backward ant a;"*is created and backes along the

built p“to n,, and any sensor visited by a"* is

set with a mark, which denotes that the sensor

hack

belongs to fma. Meanwhile, ay** carries the path

forw

information copied from & and deposits the
pheromone trails on visited sensors according to

(1 — ot + o+ AT (13)

where p € (0, 1) represents the volatility degree
of pheromone. Total remaining energy ratio

ZR,- and cpop carried by af™ are used to update
",6/’;

pheromone.
JArf P ALR(p) — R(pi) ]
Atf = - D (k) << Drprespola (14)
10 D (k) > Drpreshold

According to the updating rule, pheromones
of those sensors in t,. should be adaptively rein-
forced and subjected to constraint conditions
Egs. (1,2) of 2. a**dies when it arrives at n, €
V., and the optimal routing {rom n,to sink is set

forw

up. In the other case, if af™ meets n; € tpus it
stops further search to set the current graft sen-
sor n; as destination and comes back to source for
re-executing the above algorithm. The algorithm
is terminated when all source sensors in V, are
added into tmu» which is composed of those corre-
sponding optimal routing paths from each source
sensor to sink. In TORA., it is proved that the fi-
nal routing tree structure is loop-free by using the
taboo list in memory of ant and the time-complex-
ity of TORA has the linear relationship with the
steps moved by artificial ants. According to the
function connection between the solution quality
and the steps, the optimal solution can be ob-
tained by the concurrent processing of m ant a-
gents in klog,m steps and the time-complexity is

deduced as O(mklog,m).

3 SIMULATION RESULTS

TORA is simulated by using NS2 platform in
a network of adjustable-density sensors (25—140)
randomly distributed over a square of 500 X 500
units with the base station at (15, 480). The link
layer is implemented using IEEE802.11 MAC
protocol. Each sensor has tunable communication
radius &.(6.=d{). In the radio model, each ra-
dio dissipates Eg.=50 nJ/bit to run the transmit-
ter or the receiver circuitry and &, = 100
pJ/bit/m? for the transmitter amplifies. The pa-

rameters of ACO are set in Table 2.
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Table 2 Experimental parameters and results
. Pheromone Heuristic ~ Evaporating ~ Constant Average Average Optimal
Iterations . . . - .= .
weight a weight 8 rate o quantity Q cost e solution L solution Lopim
2 8 0.6 70 0.042 9 162. 04 162.72
Stage 1
0. 50 0.0 . .
(eycle times 700) 3 7 7 5 34 4 168. 61 168. 41
4 6 0.75 40 0.043 7 165.11 165. 34
. 7 2 0.2 150 0.045 8 166. 32 164.51
Stage 2
8 3 0. 25 200 0.047 4 160. 45 161. 20
(cycle times 800)
9 4 0.3 400 0.048 5 162.78 167. 30
The parameter oyse is defined as the factor 030
to evaluate the degree of approximation between o 025
2
tmae and the theoretical optimum counterpart. g 020
5} . B
o
OMSE = 2 2 |dz(U) - di;ﬂ\)&m ‘/ § 015}
1, €Vae 1.k o0
s 010F
(digim + K« VD (15) 8
(v) : . £ 0.05
where d{” is actual tth-hop distance and |V,| the
) 0.00 Ly
number of sensors in V. The better the degree of 50 60 70 80 90 100 110 120 130 140
the approximation between actual routing and the Node density
theoretical model, the less the total energy cost. Fig. 1 Fitting degree to theoretical optimal structure
The percentages of deviation among classical geo-
graphic-aided routing GPRS, minimum energy 22(5) E/[%%A
. ) - .65 L o
consumption routing, MECM™, greedy algo- o0 L e GPRS
rithm™*” and TORA are compared with respect to 0.55 |
0.50 |
omse. As shown in Fig. 1, the deviation in TORA « 045
always keeps the smallest value compared with 0.40 [
. . . 0.35
the other schemes with an increase of node densi- 030
ty, which denotes that TORA performs better 0.25
0.20 . . .

than other schemes on the realization of minimal
total energy-cost level in networks, because the
prior theoretical results are adapted to the design
of heuristic factor in TORA.

Energy balance analysis is shown in Fig. 2 at
the node level after 80 times of transmission-oper-
ations, where R is the ratio of remaining and ini-
tial energy levels. In annular domain with center
at sink and radius € [5,10], we randomly select
40 deployed sensors for energy-status observation
by using different routing algorithms. The peak
values of each curve in Fig. 2 are corresponding to
the normalized remaining energy level. Simula-
tion results show that the average level of TORA
is higher than the other two algorithms (GPRS
and MEC) because that the adaptive ant-agents
mode is used in TORA.

5 10 15 20 25 30 35
Node number

Fig. 2 Comparison of remaining energy level

In Fig. 3, based on the final routing structure
Lmars the performance of TORA with and without
variable weight ¢;=R;/B;(.e. , energy factor) in
heuristic factors is compared according to the
number of rounds versus the survival rate of sen-
sors. An important objective of TORA is to ex-
tend the QoS-service lifetime of WSNs, which is
measured with respect to the spent time until
30% nodes in G deplete their energy. R, and
defined as the

bounds of QoS-service lifetime when 7,; with or

R, are corresponding lower

without the variable weight ¢,. Fig. 3 shows that
R, <<R,, which means that the QoS-service life-



No. 2 Huang Ru, et al. SI-Inspired Energy Aware QoS Routing Tree for WSN 197

time of WSNs is prolonged and the robustness of
the final optimal routing tree is improved by in-
troducing the variable weight ¢; into heuristic
factor. Therefore, TORA with variable weight
outperforms that without variable weight.
Because the average delay is restricted below
scheduled delay QoS-constraint, it is set as 8 ms
in the simulation. Fig. 4 shows the mean of end-
to-end delay comparison and the average delay of
TORA is less than those of MEC and GPRS,
which is benefited by the updating pheromone
rule (Eq. (14)) based on the delay constraint to
reinforce the trails on optimal paths and weaken

the trails on those bad ones.

12
—— Without variable weight
--o-- With variable weight
106
g
§ 081
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Fig.3  Survival rate vs rounds
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Fig. 4 End-to-end packet delay

4 CONCLUSION

For constructing the optimal routing struc-
ture in WSNs, it is important to minimize the to-
tal energy cost of data transfer from the data-
sensing region to a fixed sink with delay con-
straint of QoS, and to improve energy robustness

of routing tree structure for reducing the proba-

bility of disconnected subnets, which is caused by
unreasonable energy distribution on sensors in da-
ta-gathering routing structure. This paper pre-
sents an optimal tree algorithm based on ACO,
i.e. , TORA, to achieve the above two important
objectives. By dividing WSNs into different kinds
of functional regions, energy consumption of each
sensor can be roughly estimated in advance. The
novel designs of heuristic factor construction and
pheromone updating rule can endow artificial ants
the ability to adaptively detect the local energy
status in WSNs and intelligently approach the pri-
or theoretic model in the process of routing con-
struction. Experimental results prove that the
proposed optimal routing tree can improve the en-
ergy efficiency and the QoS-service performance

of data gathering routing scheme in WSNs.
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