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APPROXIMATION OF INTERVAL BEZIER SURFACES
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Abstract: Based on the conception of perturbation, an approach to the interval Bezier surfaces approximating ra-
tional surfaces is presented using the energy minimization method. The method places more restrictions on the
perturbation surfaces than the original surfaces. The applications of the approach are also presented. Experimen-

tal result is combined with the subdivision method to obtain a piecewise interval polynomial approximation for a
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rational surface.
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INTRODUCTION

Rational curves and surfaces, as a class of
important approximation functions, are exten-
sively applied in CAD/CAM. The NURBS model
of curves and surfaces representation in CAD/
CAM system is an exact form. However, accord-
ing to the blueprint or the sample surfaces ob-
tained from model measurement, curves and sur-
faces of the product shell are impossible to be an
unique exact form. Caps between curves or sur-
faces are lack of stability because of the limit ex-
act float computation used in algorithms, which
results in the loss of some cross points in compu-
tation. Based on the above reasons, the concept
interval curves and interval surfaces are presented
in approximation theory.

In the theory of approximations, the classic
polynomial approximation methods for rational
expression have a variety of interpolations and op-
erator approximations, such as Lagrange interpo-
lation, Hermite interpolation and hybrid approxi-
mationt). These approximation methods converge
too slowly or even cannot converge!”*, Chen and
Lou®™ presented the control method for net per-

turbations to approximate the rational curves,
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and it is a local method. Meng and Wang™* used
the control method for a rational surface in the
rectangular domain.

This paper presents an approximation ap-
proach for the interval Bezier surfaces using a
global energy minimization method"'*). The ratio-
nal perturbation is used for a rational surface to
make it become polynomial surface and make its
certain module reach the minimum, so the poly-
nomial surface is a kind of rational surface ap-
proximation. According to the biggest control
point of perturbation rational surface, a rational
surface included by the interval Bezier surfaces is
obtained. On the other hand, the approach also
makes more confinements to the perturbation sur-
face, such as the requirement for smoothing at
the end points. So the polynomial approximation
is obtained, which has uX ¢ orders interpolation
at the end points. Finally, the approximation sur-
face and the global approximation with certain

continuity are obtained.

1 SHAPE MODIFICATION USING
ENERGY MINIMIZATION

During the study of CAD/CAM problems,
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various types of curves and surfaces appear. The
cusp point is used to show the shortage of control
net perturbation method. Fig. 1 shows a curve
with a cusp point. When the perturbation is ap-
plied to the curve in Fig. 1, it is assumed to be-
come the curve in Fig. 2. When the control net
perturbation method is applied to the curve in
Fig. 2, it is shown in Fig. 3, where the straight
lines are the control nets. Apparently, the cusp
point perturbation is large, but the control net
method does not include the cusp point round.
The perturbation is small when using the control
net method, so the control net perturbation
method fails to accurately estimate the perturba-

tions.

Fig.1 Curve with cusp point

M

Fig. 2 Perturbated curve

Fig. 3 Control-net-perturbated curve

The shape modification of the surface is con-
sidered with different constraints by using energy
minimization. The thin plate energy of a surface

R(u,v) is usually defined as
E(R) = J (R4 (R)D? + (R,)Hdudv
(D

The energy of a parametric surface implies its
global properties in a sense, so that it is often

used in surface fitting and fairing for smooth and

461 Here it is intended to change

natural shape
the control points of surfaces, so the thin plate
energy of error surface is minimized.

Supposing that the control points p; (0<{i<<

m, 0<_ j<{n)are changed, the perturbations g;

O<i<m+p,0<j<ntgq Vb*—4ac) are chosen
for those control points, such that the modified
surface S (u, v) satisfies some geometric con-
straints.

It is intended to determine €(u,v) by the con-

strained optimization method, such that

ERR—S) = ﬂ((R,m — S0+ (R, — S0+

(R,, — S,.)>)dudv = minimum (2)
Cmtpiantq .
j (R,, — S, dudv = ﬂ( D> &Ry dady

o ij=0

(3

d ..
where £ f»‘]’»’:ﬂR,j(u ,v). Defining that L;;,, =
J Ry Répdudo , M, = I[Rﬁ’j" R dudv, N, =

H[ 7 Ry, dudv, from Eq. (3),we have

m4-pntq m+p.ntq
(5,‘,‘ 2 €y )[4;_7gh

JJ\(RU” 7 Suz,)zdl(d"U =

ij=0 g.h=0
Similarly, we have

m+pintq m+pintq

H(R — S)Mudv = D D (e,80M,

i, j=0 g:h=0

Jgh

mApantq m4pintq

> 25 (&€ Ny

i.j=0 g.h=0

J (R,, — S,,)dudv =

So the constraint {unction can be defined as™™

m-+p.ntq m+p.n+q

D D0 (aee) L +

ij=0 g.h=0

ZMUM + Nimh) = minimum (4)

ER—S) =

2 APPROXIMATION BUILDING

An m Xn rational surface is given as

m

D12 4w, Bl () B (v)

RCu,0) — 20
> D w,Bl W) B (v)
i=0 j=0
I<u<1l;0<v<1 (5)
m7 _ n
where B,’v"(u)=|:. Ju'(l*u)'"*',B}'(u)z |: Ju’ .
z J

(1—u)" 7 are the Bernstein bases, q;; = (xi;» vij»

z; ) (G=0,1,,m;j=0,1,+,n) the control
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pOintSs wW; (1.20919"'97)1; ] =0, 1, =~y n) the

weights. So, we have

4 q
Ru.v) + eCusv) = > > p,BIG)BI(w)  (6)

i=0 j=0

where p;;(G=0,1,++,m;7j=0,1,+,n)are the con-

trol points.
Making a rational perturbation®'to the pa-

rameter surface, we have

mtp ntq

Z Z &,w; Bl (w) BT (v)

e(u,v) = =00 . _

m

D> Yw, BrGoOBI(v)

i=0 j=0

mtp ntq

m+p n+q
> o, BT OBT (o)
i=0 j=0 ) 1
m n - L Z‘ Elll{’]

Z Zw;/‘ By )BT i (v) =0 j=0

i=0 j=0

D

where

_ 1

= [m jr pMn j q}
3 2-LRIEIE @

Making R(u,v)+s(u,v) just be a polynomial

surface of degree pXq, S(u,v) is defined as

r q
RGu.v) + eu,v) = D) D p,Blw)Bi(v) =

i=0 j=0
S(u,v) (9
From Egs. (7,9), we have

m-+p ntq

R(u,v) — Stu,v) = e(u,v) = 2 Z g R, (10)

i=0 j=0

From Eq. (6), we have

i} i} qr,zwth:” (Zt )B;’ (Z}) +

i=0 j=0
m+p n+q
2 Z €I]wljB”l+/ (LI)B"J“](’U) _
i=0 j=0
m n 4 q
>0 2w, Bl QOB () 3] 3] pyB! (W) Bj(w)
i=0 j=0 i=0 j=0

an

By using the Degree Elevation Formula, two
sides of Eq. (11) can be written to the Bezier sur-
face of (m—+ p) X (n+g)orders,so Eq. (11) is

rewritten to that
mtp

o B3 LI

AR A
7 J

B (w)Bj(v) +

AN
=TT

&, B )BT (v) =

AN
T

Bt () Bt () (12)

To compare coefficients of both sides, the

perturbations are given as follows

-l A
2, 2L

1 = Oylyeeeym + f);] = 0,1, ,n + P (13)

At the same time, it is expected the norm of

e(u,v) in some senses reaches the minimum.
In this paper, Eq. (4) is chosen as the opti-

mal target function as follows
(Po.o Poa " Doy
I Pi.o Pi.l Pi.q _

Pro Ppa Py
M+ pontq m+pintq

Z/ Z/ (51/ ’EIJI)(LUIJI + ZM'/;JZ + Ntmh)

0 g

(14

So the problem is transformed into determining
Poo Poa *t Poyg

Pio Pia 0 P .
1.0 11 . 11,suchthatf

the matrix

Pro Ppa 0 Py
reaches the minimum.

af -
Let 5—0(7’—0,1, ,]5;5—0,1,

the linear equations are given with respect to dp,

(r=0,1ssp3s=0,1,°

m+pintq mtpantg / m q n
Al
L Z/ (@ S[‘]Lr][s}[]‘jew—’_

ivj=rys  goh=r

e 1 e ) 2

(Ilijgh + ZM/jgh + N:jgh) =0
r=0,1,,p35 =0,1,"",q (15)

»q) »then

rs

,q) as follows
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By computing Eq. (15), the matrix
Po.o Poar = Pog

Pio Pia t DPig

is obtained. Then from

Ppro Ppa 0 Py
Eq. (13).6,Gi=0,1,+

are also obtained.

sm+p;7=0,1,.n+q)

The energy minimization method is compared

[6] R and

with the control net perturbation method
the major difference is found that the energy mini-
mization method needs to compute L;j,,+2Mj,+

Nf.mh .

Eq. (3) gives L, = JRj’]” R% dudv . From

Egs. (3,7), it is known that R} R4 is a rational
function. So the mathematical software is used to
compute the indefinite integral of the rational
function, such as Matlab, Mathematica and
Maple. The mathematical software makes the
computation easy.

Setting

0= max | &l (16)

0=i=m+p; 0==j<ntgq

where the maximum value of vector denotes the
maximum absolute value of every component.
Whereas from Eq. (6), we can deducel™

’ q
Ru.v) = > > p,Bl)Bi(v) — euv)

i=0 j=0

(17)
So
m+p ntq
DD e, @, B () B (v)
el = |5 <
D> Yw, B ) Bi(v)
i=0 j=0
m+p ntq
0D e, B GoO B ()
i=0 j=0 J—
D> w, B ) Bi(v)
i=0 j=0
r q
0> D w, BIa)Bi(w) =6 18)
i=0 j=0

This error may be taken as the half of control in-
terval of interval polynomial. Then we have

r o q
Ru,v) & > > (p, + 6tDB! W) Bi(v)

i=0 j=0
[t]=[—1.,1] (19
This is the center form of interval polynomi-

al. Then the rational surface can be deduced,

which is contained in a pX¢ degree interval poly-

nomial.

3 APPROXIMATION WITH END
POINT INTERPOLATION

Firstly, for edge curves the interval Bezier
polynomial can be used for approximating with

end point interpolation. Taking R, («,0) as an ex-

ample
”’1 m
qu.ow:.oB, (w)
R (u,0) =~ (20)
D@ Bl G
i=0
From Eq. (13), we have
pllm
2 wk,o(pro.o — o)
gy th=i tydLk 21)
RSP
w(.
to\/\**i b Z() k
and simultaneously Eq. (21) satisfy that
(i)(oao) - (i)(ovo)
P ! (22)

p(l)(lao) - q(l)(la())

1= 0,1, 510 < %
Eq. (21) is equal to
€7(0,0) =€ (1,00 =0 i =0,1,,p
(23)
or
€(0,0) = e(1,0) = e(2,0) = - e(p,0) =
em + p — p,0) = ==« =elm + p,0) =0
24)
Thus control points p,o,o(t():O,l,-" U p—
p+1,+,p) of approximation polynomial p,(z,0)
which satisfy the interpolation condition (Eq.
(21)) are determined by Eqgs. (21,23). Therefore
the objective function is transformed into deter-
mining p, .o (ty=p+1,+,p—p—1),then deter-
mining & (=pg+1,+,m~+p—p), which makes

the value of the function minimum. That is

FPiron s aBynr) = J (R, — S, dudo =

mtp—pe
512-,0 L; ..., = minimum (25)
i—pt1

Because p;  (i=0,1,"" , p) are

b s
already deduced by Eq. (24). By computing the

set of equations above, p,i1,0»***s Pp—,—1,0 can be
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obtained, then ¢ (i=pg+ 1, ,m+p—p—1)are

obtained as follows

plim
Z wk,o(ptu,o - Rk.o)[ :|[ :|
ro+k:i t() k
PR
w,
1y k=i e todLk

i:/l+19"'9m+P_/1_1 (26)
Assuming that

&, =

e, = max | €.0] Q27
i=pt 1, mtp—p—1

then
m+p ! m+p
w; & B (1)
5](%,0) - E 0700 -

m

T D BrG

i=0

mtp—p—1 /
w; &, B (w)

m (28)
e Ewi,() Bjn(u)
i=0
From Eq. (28), we have
p—pr—1
[0 | < e, D> B (29)
=1
Therefore
Rl(uvo) == pl(uao) - El(u,O) -
»
2 (Pk‘o + ek[t])Bf(u) (30)
k=0

[0 k= 0s1ss e A p o prseeeam £ p
= e, k=p+1,m—+p—p—1
3D
Thus interval polynomial approximation of p
orders can be obtained for a rational curve which
preserves the interpolation of g orders at end
points. The other three edges are approximated
using the same method (the two edges of v direc-
tion are interpolated, which preserve the interpo-
lation of ¢ orders at end points). Now four edges
are determined, then the corresponding control
points and the control interval of four edges can
be obtained. The others are solved by using the
method in Section 2. Consequently, the polyno-
mial of p X g degrees is determined, which ap-
proximates or contains the initial rational surface
preserving the interpolation of # and ¢ orders at

the end points, respectively.

4 EXAMPLES

The control points and corresponding

weights of a bicubic rational surface (Fig. 4) are

given as follows

(R;,;))=
9 13 13 27 127 3 3
ol e BT By
1018 25 [26 33 497 [, 165 847 189 120 537
7 7 17 15 15 15 62 31 23 46 23
L9 181 [14 18 0] F1247 48] 714 19 197
8 4 4 3 7 7 515151 L3 6 6
3 7 8 13
3] [333] [345] e
5 8
1 3 3 3
7 5 32 23
3 3 9 3
(CU;,]):
8 16 10
3 9 3
5
2 3 2 4

where i=0,1,2,3; j=0,1,2,3.

By using the presented method, a biquartic
interval Bezier approximation is obtained, which
preserves the interpolation of =1 and ¢=1 order

at two end points, respectively (Fig. 5).

Fig. 5 Biquartic interval Bezier surface
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Fig. 6 is a bicubic Coons surface approximation
for the initial rational surface. Fig. 7 is the inter-
val control grid. The surface in Fig. 5 is produced
by central control points. Fig. 5 demonstrates the
generating procedure of biquartic interval Bezier
surface. From the examples, it can be easily seen
that the interval surface approximation remains
the fundamental shape of the initial rational sur-
face, which is produced by the central control
points and is almost the same as the initial sur-
face. Furthermore, the approximation surface is
polynomial interval surface. The interval surface
produced by interval control points has a well ap-
proximation. So its property is better than the
Coons surface approximation. Because of the con-
sidering global property, the interval approxima-
tion obtains a better result than the classic meth-
ods. Curves and surfaces of the product shell, ac-
cording to the blueprint or the sample surfaces
obtained from the model measurement, belong to

a variable domain of the exact curves and sur-

Fig. 6 Bicubic Coons surface

Fig. 7 Interval control grid

faces. The method can be used to describe the
variable domain when the polynomial approxima-

tion is performed for a rational curve or surface.

5 CONCLUSION

Based on the conception of perturbation, an
approach is presented for the interval Bezier sur-
faces approximating the rational surfaces by using

energy minimization method. The approach

makes the perturbation surfaces have more re-
strictions than the original surfaces. The result
can be combined with the subdivision method to
obtain a piecewise interval polynomial approxima-
tion for a rational surface. In this paper, the con-
vergence of the approach is not given, and it is

worthy of researching further more.
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