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Abstract: Flight delay prediction remains an important research topic due to dynamic nature in flight operation
and numerous delay factors. Dynamic data-driven application system in the control area can provide a solution to
this problem. However, in order to apply the approach, a state-space flight delay model needs to be established
to represent the relationship among system states, as well as the relationship between system states and input/
output variables. Based on the analysis of delay event sequence in a single flight, a state-space mixture model is
established and input variables in the model are studied. Case study is also carried out on historical flight delay
data. In addition., the genetic expectation-maximization (EM) algorithm is used to obtain the global optimal esti-
mates of parameters in the mixture model, and results fit the historical data. At last. the model is validated in

Kolmogorov-Smirnov tests. Results show that the model has reasonable goodness of fitting the data, and the
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search performance of traditional EM algorithm can be improved by using the genetic algorithm.
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INTRODUCTION

As a result of excessive demand for air trans-
portation, the flight delay becomes an urgent
problem that exacerbates national transportation
bandwidth limitations. Over the past decade, re-
searches were focused on analyzing flight delay
factors, predicting delay and propagation, and

U Determin-

mitigating delays and other issues
istic models are commonly used in delay predic-
tion. For example, one of the models is to esti-
mate delays according to flight schedule. Models
like this usually ignore random factors such as
unexpected events and queuing. Prediction mod-
els based on random density functions of seasonal
trends, daily propagation and daily delay~®!, that
to a certain extend reflect the overall patterns of
flight delays, are insufficient in capturing varia-

tions in individual flight delay.
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Real-time prediction of flight delay is essen-
tial in the state estimation process for a dynamic
system. Flight operation process is monitored in
order to collect data in real time, which provides
an opportunity to apply dynamic data-driven ap-
plication system (DDDAS)"/that can dynamically
employ prediction to control and guide the mea-
surements, and in reverse, can dynamically steer
the prediction based on the measurements.
DDDAS promises more accurate analysis and pre-
diction, more precise controls, and more reliable
outcomes, which can improve advance prediction
capabilities of prediction systems. The challenge
in the problem remains in establishment of the de-
lay state-space model, which is the foundation in
applying the dynamic data-driven approach.
P. Wang™! presented a simple recursive model
based on delay propagation. In the model,

P. Wang demonstrated a linear relationship a-
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mong system states while ignored the effective
pattern of uncertainties. In this paper, a recur-
sive model is further improved with the use of an
explicit expression to calculate flight delay caused
by random factors. Delay information is feedback
to the state-space model as the system input. In
order to search for maximum likelihood estimates
of parameters in the model, the genetic algorithm
(GA) is combined with the traditional expecta-
tion-maximization (EM) algorithm to avoid the lo-
cal maximum problem. Performance comparison
between the model and the genetic EM algorithm

is given as well.

1 STATE-SPACE MODEL OF FL-
IGHT DELAY

1.1 Delay propagation of flight

From departure at an airport to arrival at the
destination, an aircraft accomplishes a flight
task. For efficiency and cost considerations, an
aircraft should perform multiple tasks consecu-
tively each day. Assume d denotes a departure
event and a an arrival event. Then the discrete
event sequence of an aircraflt performs in a day
can be written as d,a,dsa,***d,a,s where the state
of the next event only depends on the state of the
current event, and not on the state of the past
event. The discrete events sequence is a Markov
chain. Therefore, the relationship among states

can be represented in a state-space model.
1.2 State-space model of flight delay

The state-space model of flight delay based

1" can be expressed as

on the recursive mode

System model
T = x + u; + w, (D

Measurement model

yi = + v (2
where z; denotes the state variable, «; the sys-
tem input, y, the measurement, w; and v; de-
note the process and measurement noise, respec-
tively, and both are random white noises. The
system model (1) describes the evolution of the

state variables over the sequence, whereas the

measurement model (2) represents how measure-

ments relate to the state variables. If an aircraft
accomplish n flight tasks, then we have i=1,--,
2n. When 7 is an odd number, x; denotes a de-
parture delay state or an arrival delay state, vise
versa.

Since the flight delay in this paper represents
the difference between the actual flight time and
the scheduled flight time. Random factors such as
weather, baggage check-ins, and mechanical fail-
ures may result in a delayed flight. On the other
hand, an early flight task completion is achievable
through planning methods and strategies. Flight
delays caused by these uncertainties can be added
to the model as «,. Additionally, air turnaround
time and ground turnaround time correspond to
two uncorrelated processes. Values of «, for dif-
ferent models should be estimated in two delay
states. However, the relationship between the
uncertainties and the flight delays is not repre-
sented by any mathematical models, which leaves
the calculation of u; as a key problem in estab-

lishment of the state-space model.
1.3 Modeling of system input

In general, x; is the departure delay from an
upstream airport, u«, is represented as the delay in
air. When «;<C0, it is actually denoted as flight
time compensation. Earlier statistics show that
the longer itinerary duration a flight is to take,
the more compensation the flight can obtain. And
the longer itinerary duration impacts on the final
status of the arrival delay. As a result, a more ef-
fective way to represent u; is given as follows

w, = fs; %, (3)
where fs; denotes the scheduled flight time be-
tween airports, 7»; the delay of per scheduled
flight time, or delay rate. Table 1 shows delay
rates in percentage at different levels extracted
from the historical flight data.

Nearly 85% of flights obtain compensation in
some levels, while 15% of flights end in flight de-
lays. The delay rates vary significantly in distri-
bution, decreasing sharply as a function of the
distance from the center. The statistic result sug-

gests us to use a finite mixture model to describe
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Table 1 Percentages of delay rates at different levels

Rate Percentage/ %
(—1.—0.4) 0.2
[—0.4,—0.2) 10. 7
[—9.2,0] 73.8
(0,0.2] 14. 4
(0.2, 0.9

the delay rate distribution. Finite mixture distri-

] {s a mathematical method to mod-

bution model
el the generic random phenomena. lLong-term em-
pirical results show the high adaptability of this
method. The density distribution g of delay rate is
modeled as a function with » mixed components.

The mixture density of the ith point is written as

m

g @ = D>lad,(r| 0) 4

j=1
where @ = (¢;,+,@,,0,,+--,0,) denotes the pa-

rameter vector, «;(e¢; € [0,1], Za] = 1) the
j=1

mixing weight of the jth component, and
¢;(r;| ) the density function of the jth compo-
nent depending on parameter 0,. In this paper, we
assume that g is a normal mixture model. And 6,
is denoted as ¢; = (#;,2;) , where p denotes the
mean and X the covariance matrix.

In the finite mixture model of data set r=
(r1s 75500 57,), 7 is assigned to the most possible
component. Then, a label vector set of r;, z=
(Z1+25+°°*+2,) is obtained. If 7, belongs to the kth
component, then z;=1 and the rest label variants
are set to 0. Parameter vector @ is estimated to
obtain z. And the log-likelihood of @ is given as

follows

logL(@|r) =

n

> {loga; + logg,(ri| 60} (5)

1 j=1

2 PARAMETER ESTIMATION B-
ASED ON GENETIC EM ALGO-
RITHM

i

The EM algorithm"® is the most popular and
effective method for parameter estimation. The
traditional EM algorithm is an iterative two-step
procedure; E-step and M-step. The E-step calcu-

lates the expectation of the log-likelihood on the

observed data r and the current value of @. The
M-step updates the corresponding estimate of 0.
After a certain number of iterations, the algo-
rithm obtains the local optimal value of ®. In or-
der to avoid the local maximum problem associat-
ed with the traditional EM algorithm, calculation
mechanism of GA can be applied to EM to find
the global optimum. The combination of GA and
EM is known as genetic EM algorithm ",

In this paper, the fitness function used in the
genetic EM algorithm is the log-likelihood func-
tion defined in Eq. (5) and calculation stops when
improvement of the fitness function value decreas-
es below a given threshold. The procedure of the
genetic EM algorithm is shown as follows

Initial: oldChrom=<(@!,+--,0)

EMrate<1E-8;
bestFit<—10000;
oldFit<-100;
while (bestFit-oldFit) > EMRate
fitV<-Evaluation (oldChrom, r);
newChrom < Selection (oldChrom, f{itV,

P
newChrom < Crossover (newChrom, £,
P
newChrom<-Mutation (newChrom, p,,) ;
newChrom<-EM (newChrom, »);
oldFit<-bestFit;
bestFit<-max (fitV) ;
newChrom<—sortByMiu (newChrom) ;
oldChrom<—newChrom;
end
3 CASE STUDY AND VALIDA-
TION

The flight operation data used in this case
study is provided by a domestic airline. Informa-
tion like arrival delay, upstream delay propaga-
tion and delay rate is extracted from the experi-
mental data which is also divided into several
groups categorized by operating date, testing set
(only one set), and training set (excepting the
testing set). Parameters are estimated using the
genetic EM algorithm on the training set. The fit-

ness of the model is validated on the testing set.
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3.1 Density estimation of delay rate

Density estimation of delay rate is imple-
mented in Matlab7. 1. The density distribution of
the original delay rate is shown in Fig. 1, where
the distribution represents a mixture of normal
distributions rather than a single normal distribu-
tion. Assuming component number m=1,2,3,4,
we obtain one single model and three mixture
models after parameter estimation. As a result,
Fig. 2 shows a fitted distribution with two compo-

nents.
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Fig. 1 Density distribution of original delay rate
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Fig. 2 Fitted distribution with two components

3.2 Fitness test of model

Since the normal mixture models are mix-
tures of normal distributions, general test meth-
ods cannot be directly applied to fitness test for
the model. Therefore, a hypothesis test based on
Kolmogorov-Smirnov method is used in the test
with steps shown as follows.

(1) Generate a number of random samples
according to the density function of the mixture
model, where the sample set is denoted as X, and
the testing set is denoted as X,.

(2) Give a null hypothesis H,: in which X,

and X, are drawn from the same continuous dis-

tribution.

(3) Run the Matlab function” (h, p) =
ktest2(X,,X,)"to find whether the distributions
are the same at the 5% significance level. If the
significance level equals or exceeds the p-value
then we have A=1, otherwise h=0. Reject I{, if
h=1 or accept the null hypothesis if ~A=0.

The Results from all four tests on these mod-
els are listed in Table 2. The null hypothesis is
accepted when m = 2. Therefore, for the case
study, the normal mixture model with two com-

ponents has the best fitness.

Table 2 Results of model tests

m 1 2 3 4
h 1 0 1 1
P 0. 006 0. 269 0. 008 0.000 1

3.3 Performance validation of genetic EM algo-

rithm

The performance of model is validated in the
calculation through the comparison between the
genetic and the traditional EM algorithms. On
the same stop criteria, the log-likelihood values
produced in all iterations from the two EM algo-
rithms with m = 3 are collected and shown in
Fig. 3. In each step, the genetic EM algorithm
achieves the better log-likelihood value, which

represents the higher effectiveness.

3870
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% 3830 -t«,'— ------------
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3770 | ) 1

0 500 1000 1500 2 000
Iteration step
Fig. 3 Log-likelihood values of genetic EM and tradi-

tional EM

Additionally, the total iteration numbers of
the two EM algorithms, denoted as m, are com-
pared in Table 3. Results show that the iteration
number of traditional EM algorithm increases sig-
nificantly with larger m. The iteration number in-

creases slightly in the genetic EM algorithm.
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When the algorithm preparation time is ignored,
the genetic EM algorithm can achieve the faster
convergence and maintain the higher accuracy

than the traditional EM algorithm.

Table 3 Iteration Steps with increasing m

m
2 3 4

Traditional EM 968 1 865 3053
Genetic EM 936 1734 972

Algorithm

4 CONCLUSION

In this paper, a flight delay state-space mod-
el is proposed based on the delay propagation. In
the model, delay from the upstream event is de-
noted as a current state, while the delay caused
by other uncertainties is denoted as the system in-
put. System inputs are produced using different
models when two delay states are estimated. The
modeling process is demonstrated in detail. The
genetic EM algorithm is used to find the global
optimal estimates of the parameters in the normal
mixture model of random delay. Case study and
model validation are carried out on real flight da-
ta. Results show that the model has an excellent
fit to the real data in both the mixture density dis-
tribution  calculation and the Kolmogorov-
Smirnov test. In conclusion, the traditional EM
algorithm can be optimized and become more effi-
cient by using GA method in finding the global
optimum. Most importantly, the flight delay
state-space model proposed in this paper can
make it possible to apply DDDAS to the air trans-
portation industry in the near future. DDDAS ar-
chitecture for flight delay prediction can be estab-
lished based on this computational model, togeth-

er with the advanced measurement infrastructure

and information technology.
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