Sept. 2011

Transactions of Nanjing University of Aeronautics & Astronautics

Vol. 28 No. 3

SOLVERS FOR SYSTEMS OF LARGE SPARSE LINEAR AND
NONLINEAR EQUATIONS BASED ON MULTI-GPUS

Liu Sha', Zhong Chengwen'*, Chen Xiaopeng®

(1. National Key Laboratory of Science and Technology on Aerodynamic Design and Research,

Northwestern Polytechnical University, Xi’an,710072, P. R. China;

2. Center for High Performance Computing, Northwestern Polytechnical University, Xi’an, 710072, P.R. China;

3. School of Mechanics, Civil Engineering and Architecture, Northwestern

Polytechnical University, Xi’an, 710072, P.R. China)

Abstract: Numerical treatment of engineering application problems often eventually results in a solution of sys-

tems of linear or nonlinear equations. The solution process using digital computational devices usually takes

tremendous time due to the extremely large size encountered in most real-world engineering applications. So.

practical solvers for systems of linear and nonlinear equations based on multi graphic process units (GPUs) are

proposed in order to accelerate the solving process. In the linear and nonlinear solvers, the preconditioned bi-con-

jugate gradient stable (PBi-CGstab) method and the Inexact Newton method are used to achieve the fast and sta-

ble convergence behavior. Multi-GPUs are utilized to obtain more data storage that large size problems need.

Key words: general purpose graphic process unit (GPGPU); compute unified device architecture (CUDA) ; sys-

tem of linear equations; system of nonlinear equations; Inexact Newton method; bi-conjugate gradi-

ent stable (Bi-CGstab) method

CLC number: TP391 Document code : A

INTRODUCTION

Mathematical modeling of engineering prob-
lems often leads to systems of linear or nonlinear
equations. The solution of such resulting equa-
tions utilizing numerical tools via digital computa-
tional devices is usually of very time-consuming,
because most real-world engineering applications
are often of extremely large size for computation.
In this paper, with the Inexact Newton method
and the preconditioned bi-conjugate gradient sta-
ble (PBi-CGstab) method, linear and nonlinear
solvers based on muti graphic process units
(GPUs) are proposed for large scale problems.

General purpose GPU (GPGPU) technique
denotes the implementation of general purpose
computing by using programmable GPUs"'. Tt
has been widely applied in many computational
areas owing to its more powerful floating calcula-

tion abilities and wider bandwidth compared with

Article ID:1005-1120(2011)03-0300-09

the traditional CPU™*). Furthermore. the inher-
(SIMD)

mechanism for GPGPU operation renders this

ent single-instruction-multiple-data

technique suitable for massively loaded calcula-
tions.

A serial of GPU-based linear algebra opera-
tions were proposed by Kriiger et al in 2003,
The first GPU-based conjugate gradient solver for
unstructured matrices was proposed by Bolz et
al®l. Buatois et al proposed a general sparse lin-
ear solver using CG method in 2 0 0 9 . Cevahir
et al developed a fast CG based on GPUs with
some novel optimization techniques™. These arti-
cles show great speedup ratio of GPU to CPU.

In early work, Zhong and Liu proposed a fast
solver which has a great speedup ratio about 30
on single GPU™!., In this paper, multi-GPUs are
used to obtain more data storage space that large
size problems need. In the case of linear solver,

the Bi-CGstab method can afford to solve the sys-

Received date: 2010-10-13; revision received date: 2011-03-10

E-mail : virgilius @mail. nwpu. edu. cn

No. 3 Liu Sha, et al. Solvers for Systems of Large Sparse Linear and--+ 301

tem of linear equations with non-symmetric ma-
trix which cannot be solved by the CG method. A
better convergence of the method is achieved by
using the precondition strategy. For the nonlinear
solver, Inexact Newton method is utilized. The
grid generation project in computational fluid dy-
namics is used to test the practicability of linear
and nonlinear solvers, in which systems of linear
and nonlinear equations are solved in order to ob-

tain the coordinates of grid nodes.

1 COMPUTE UNIFIED DEVICE
ARCHITECTURE

The compute unified device architecture
(CUDA)™! is a GPU architecture manufactured
by NVIDIA. CUDA GPU contains a number of
SIMD multiprocessors. Each multiuprocessor
contains its own shared memory, read-only con-
stant, and texture caches that are accessible by all
processors on the multiprocessor. GPU has a de-
vice memory which is accessible by all multipro-
cessors.

CUDA GPU devices run a high number of
threads in parallel. Threads are grouped together
as thread blocks. Each block of threads is execut-
ed on the same multiprocessor and can communi-
cate through fast shared memory.

Threads in different blocks can communicate
only through device memory. Access to the device
memory is very slow compared with the shared
memory. Device memory accesses should be as
refrained as possible, and these accesses should
be coalesced to attain high performance. Coalesc-
ing is possible if the threads access consecutive
memory addresses of 4, 8 or 16 bytes and the
base address for such a coalesced access should be
multiple of 16 Chalf warp™) times size of the
aforementioned memory types accessed by each

thread.

2 SYNCHRONIZATION

Using Win64 API, a thread is created for
each GPU on board in the program. Each thread
manages the data input and output of GPU, and
calls the GPU kernel functions and synchronizes

with other threads. When creating and ending

threads , CUDA codes " cutStartThread ” and
" cutWaitForThreads” based on Win64 API can
also be used for simplification.

The multi-GPUs solver works as this pat-
tern; Firstly, CPU distributes data and tasks to
GPUs; Then, set barriers to GPU managing
threads. A GPU managing thread to run in front
of its barrier means that its GPU has finished
computational work, renewed its own data on de-
vice memory along with its host memory counter-
part, and now, it is waiting for the data needed to
be renewed by other GPUs. When all threads
have run in front of their barriers, the barriers
are released, then, each GPU obtains renewed
data that they want and continues to work. The
whole process consisting of setting and releasing
barriers is one time of synchronization.

In this paper, the semaphores are used to
manage the synchronization among threads. The
synchronization process is shown in Fig. 1. De-
fine an array of semaphores (Sem[GPU_NUM)
for GPU managing threads with initial value 0
and activation value GPU_NUM .

HANDLE Sem[GPU_NUM]J;

Sem [device
(NULL, 0, GPU_NUM, NULL)

When a thread barrier, its
semaphore is activated by adding GPU_NUM to

initial value 0;

num | = CreateSemaphore

reaches

ReleaseSemaphore (Sem [device. num],
GPU_NUM, NULL)

Then the thread waits for the activation of
semaphores corresponding to other threads:

WaitForMultipleObjiect (GPU_NUM, Sem,
true, INFINITE)

The first parameter of this function is the
number of semaphores. The second parameter is
" Sem”, the first word address of semaphores.
The third parameter is set ”true”, it means the
function cannot return until all semaphores are
activated. The fourth parameter is the maximum
waiting time, which is set to "INFINITE” to in-
sure the logic correctness of multi-GPUs solvers.

When the demand of this function is fulfilled, the

synchronization process is finished.

302 Transactions of Nanjing University of Aeronautics &. Astronautics Vol. 28
the iterative solution of M~ 'Ax =M "' f depends
R Thread 2 Thread 3 Thriad4 on the properties of M 'A instead of A. The pre-
Operation| |Operation| |Operation| | Operation conditioner should be chosen in order that
| [I I M 'Ax=M "' f may be solved more rapidly than
Y Y Y Y — o : i ‘o
Relcass Releass Releass Reloase . Ax=f. In this paper, the Jacobi precondmoner/ is
Semaphore[1]|| Semaphore(2]|| Semaphore[3]|| Semaphore[4]| & chosen for convenience of parallel computing'"'.
l l l l g The process of PBi-CGstab method is shown as
Waiting for all||Waiting for all||Waiting for all||Waiting for all g foll .
g ollows:
Semaphores || Semaphores || Semaphores || Semaphores)
| | [I AER"",x,fER"
L] L] L] 1] o)
Data Data Data Data Set initial estimate x,
exchange exchange exchange exchange ro=f—Ax,
l l l l Choose r* (For example r* =r,)
Operation Operation Operation Operation for k=0,1,2,+,do
| | | | if k=0
then p,.=r,
Fig. 1 Threads controlling muti-GPUs and their syn-)

chronization

3 LINEAR SOLVER

3.1 PBi-CGstab method

Bi-CGStab is an iterative algorithm for solv-
ing a large, sparse, non-symmetric system of lin-
The method attempts to

find approximate solutions in Krylov subspacest®!

ear equations Ax = f.

appropriately generated by A and initial residual
ro= f— Ax,. Bi-CGstab combines the advantages
of both the Bi-CG and the general minimal residu-
al (GMRES) methods™"?, which basically follows
the Bi-CG procedure while the residual is mini-
mized in each step by using the GMRES method.
The Bi-CG converges fastly but exhibits somehow
numerical instability. The main goal of Bi-CGstab
is to retain, in attempt to keep the fast rate of
convergence, the coefficients resulted from the
Bi-CG method while improving the numerical sta-
bility by absorbing the GMRES advantage in its
numerical stability. As in Ref.

[12], the Bi-CGstab method has achieved both

fast convergence and numerical stability.

demonstrated

The idea of preconditioning for a system of
linear equations is elementary: Precondition of
the system for any non-singular matrix M means
to pre-multiply both sides by the inverse of the
matrix M (the left preconditioning matrix is pre-
cise), i.e. ,M 'Ax=M "' f, which delivers a sys-

tem with the same solution. The convergence of

else ,3;(:7("% T4 * (ﬁ)

(r’,r,) o,

Pr+1 :rkJFﬁ& (P/\»*OJA»AP/QX‘)
end if
Solve Mp; 1= pii
ak+lzw

(r Apii1)
S=ri— 0 1 Apiy
Solve Ms* =s
o= S

(As™ ,As™")

X1 =Xt pioH i s”
Py =85 — W As”
Check convergence

end do
3.2 Data blocking on multi-GPUs
The data is blocked and the blocking infor-

mation is recorded in multi-GPUs solvers as
shown in Fig. 2. The functions of threads manag-
ing GPUs allow transmitting only one parameter.
So the blocking information is stored in an archi-
tecture body named Solverplan:

typedef struct

{int device; //The device (GPU) in-
dex

int dataN;

data

//The length of blocked

int dataStart;} Solverplan; //The index of
blocked data
Solverpan plan[GPU_NUM |; //The first

word addresses of plan [GPU_ NUM] are the
transmitted parameters

The thread can use the information that

No. 3 Liu Sha, et al. Solvers for Systems of Large Sparse Linear and--+ 303

—plan[1]. dataStart

plan[1]. dataN

—plan[2]. dataStart

plan[2]. dataN
Matrix Vector

—plan[3]. dataStart
plan[3]. dataN

—plan[4]. dataStart

plan[4]. dataN

Fig. 2 Packed matrix and vector blocking process

"Solverplan” provides to exchange data with oth-
er threads. In the solver, a vector A stored in
blocks is defined like this

Float * d_vectorA[GPU_NUM]J;

So "array d_vectorA[n]” is the nth partition
of vector A. The thread function is coded careful-
ly to ensure it can be called by all GPU-managing
threads. Defining vector in such a manner will fit
the generality of the thread function. The more
complex matrix blocking will be presented in Sec-

tion 4. 2 along with matrix generation.
3.3 Linear solver on multi-GPUs

The aforementioned thread function that can
be applied to all GPU-managing threads is the
core algorithm of the solvers. This paper presents
the detail of it for the linear solver. Fig. 3 shows
the process of thread function called by the nth
thread.

InFig. 3,d f[n].,d r[n],d-r0[n],
d_p[n], d_-v[n], d_t[n], d_s[n] are the nth
partition of vectors f, r, rosp, Ap*, As”, and s.
They are stored in the nth GPU. Their lengths
are all equal to plan[n]. dataN shown in Fig. 2.
Part algorithm of kernel function of product of
y=Ax is shown as follows

if (row_i1d<< plan[device_num]. dataN)

{

for(int i=id * m; i< (id+1) * m; i+
+)

y[row_id]+ =values[i] * x[col_
ind[i]];

| Memory allocation on device n |

Y
| Computing predictioner M |

1]
d_x[n]=h_x[n]
d_f[n]=h_f[n]
d r[n]=d_rO[n]=d_f[n]-A[n]*d_x[n]
Set d_p[n], d_v[n] zero
1]

a=w=sum_roua=1 |

| Roub[n]=(t[n], r0[n]) <kernel> |
¥

| b=(sum_roub*a)/(sum_roua*w) |
1]
Synchronization
Set sum_roub the sum of all roub[n]

¥
| d_p[n]=b*d_p[n]-w*b*d_v[n]+d_r[n] <kernel> |
]

| d_p*[n]=M-1[n]*d_p[n] <kernel> |
1]

Synchronization
obtain d_p*[n]

Y
| d_v[n]=A[n]*d_p*[n] <kernel> |
1]

| Temp[n]=(d_v[n], d_r0) <kernel> |
1]
Synchronization
get sum_temp
a=roub/sum_temp
L]
| d_s[n]=d r[n]-a*d_v[n] <kernel> |

1]
| d_s*[n]J=M-1[n]*d_s[n] <kernel> |
Y

Synchronization
obtain d_s*[n]

Y
| d_t[n]=A[n]*d_s*[n] <kernel> |
1]

Temp[N]=(d_t[n], d_s[n]) <kernel>
Temp[N]=(d_t[n], d_t[n]) <kernel>
¥

Syncheonization
Get sum_temp, sum_temp2
W=sum_temp/sum_temp2

L]
| d_x[n]=d_x[n]+a*d_y[n]+w*d_z[n] <kernel> |

1]
| d_r[n]=d_s[n]-w*d_t[n] <kernel> |

Fig. 3 PBi-CGstab on GPUs

In the above algorithm, the vectors x, p*,
s" are needed by matrix-vector multiply, so the-
yare stored in entire lengths without blocking.
But they are updated on the nth GPU only the nth
partition. So, when they need to be updated, all
threads should be synchronized. Then the data of
updated partition can be exchanged. temp [n],
temp2[n] and roub[n] are used to save the dot
products of the nth partition of vectors temporari-

ly. sum_temp, sum_temp2 and sum_roub are the

304 Transactions of Nanjing University of Aeronautics &. Astronautics

Vol. 28

summation of them. Before calculate sum_temp,
sum_ temp2 and sum_ roub, threads need to be
synchronized. There are five synchronization bar-
riers in thread function shown in Fig. 3.

There are three kinds of kernels (functions
processing on GPU) which can be called by all
thread functions in the solver. These kernels
named MVP, IP, VSP are utilized to do the four
matrix-vector products, four inner products, six
vector summations shown in Fig. 3. When thread
functions calling kernels, the elements of Solver-
plan are transferred to them in order to specify

which part of data they are dealing with.

4 NONLINEAR SOLVER

4.1 Inexact Newton method

In practice, a system of nonlinear equations
should first be linearized, and then, iteration
methods are employed to seek the solutions of the
set of linearized equations. This linearization
strategy is widely used in engineering applications
for its proved effectiveness and usefulnesst %1,
The Newton method serves as basis of the lin-
earization approaches. The procedure of Newton
iteration method is as follows.

For a set of nonlinear equations

fx) =20 (D
where f=Cf1,/ s /DT x=(6,&,,6)". Its
tensor form is f,(§,,&,,++,6)=0 (=1,2,3,-+,
n). The equations can be expanded at x*(value of
x at kth iteration step) using the Taylor's series,
and only the Ist order terms of the series are re-
tained

o
2%

i
j=1 7

AEf =— [(xh) (2)

where A§=§&,— &' For the resultant system of
linearized equations, the matrix of coefficient,

known as Jacobian matrix, becomes

af ofy A

kK, %z,

afz afz eee afz
Df(x)t = | % %, %, (3)

_(95] 9‘{:2 ag,l_Jf

The solution of the system of linearized equa-

: &
tions, x'"!

, is sought in an iterative manner as
follows

Df (x" — ¥ = f(xH (4
where x*"lis the new solution vector of the system
of nonlinear equations. The vector x is updated
using Eq. (4) until the convergence is satisfacto-
ry.

It is computationally expensive to obtain the
accurate solution of the system of linear equations
since the number of variables is usually fairly
large in practical engineering applications. The
solution of the system of linear equations resulted
from the Newton method is only an intermediate
step of the entire process for solving a system of
nonlinear equations. Therefore, one might not al-
ways seek an accurate solution of the system of
linear equations intermediately encountered. This
leads to the Inexact Newton method practically
sharing the same form of the original Newton
method. The Inexact Newton method has been
routinely used in many engineering applications.
As reported in Refs. [17-19], the Inexact Newton
method can achieve a satisfactory balance between
the solution accuracy of the system of linear equa-
tions and the computational cost incurred by the
solution process, thus eventually yielding the so-
lution of the system of nonlinear equations to a

satisfactory degree of accuracy.
4.2 Nonlinear solver based on multi-GPUs

In engineering application problems, after
linearizating, the resultant coefficient matrix is
usually a sparse matrix that needs a formatted
storage for storage efficiency. Such process
should be mapped to GPUs.

Almost every nonlinear function f;(x) in the
system of nonlinear equations f (x) =0 has the
same form in engineering applications. For exam-
ple, when using the finite difference method for
solving nonlinear partial differential equations,
each f;(x) is a polynomial and all of f;(x)s share
an identical structure, except a limited number of
f: (x) that describe the boundary conditions.
Therefore, when the program deals with the gen-
eration and the formatted storage of the coeffi-

cient matrix, only a few branch predictions are

No. 3 Liu Sha, et al. Solvers for Systems of Large Sparse Linear and--+ 305

required. It becomes obvious that the processes
used for generation and formatted storage of the
coefficient matrix ideally fit the mechanism of
SIMD of GPU.

The generation and formatted storage of a
n * n matrix is carried out through n threads di-
vided by several GPUs. Each row of the matrix
corresponds to a thread. The non-zero elements
in a row are counted, and then such non-zero val-
ues are sequentially placed into the matrix for for-
matted storage use.

The formatted storage matrix owns the same
number of rows as the original coefficient matrix.
The number of columns of the formatted storage
matrix is set equal to the non-zero element num-
ber of the row which has the most non-zero ele-
ments. Hence, some zero-elements might remain
in the formatted storage matrix. This arrange-

ment facilitates all threads in the SIMD mecha-

nism of GPUs by providing threads of GPUs with
an identical addressing pattern. It can be noted
that, in most cases, the loss of computational re-
sources because the space used for storage of ze-
ro-elements is of minor nature.

Since the multiplication of matrix and vector
is involved in the computation, the column-wise
storage appears more advantageous for coalescing

L9-201 which leads to

to attain high performance
the formatted matrix eventually stored in the
form of a vector. In this work, all non-zeros in
the matrix are shifted to the left. Nonzero values
of the compressed matrix are stored in an array in
column order. Corresponding column indices of
each nonzero in the original matrix are written in
another array. Fig. 4 depicts a formatting exam-
ple with col_ind standing for column indices and

the two arrays are divided into three parts stored

on different GPUs.

3 7 i [« GPU1-»}+-GPU2—+GPU3« GPU I-+}= GPU2>/GPU3« GPU >}« GPU2~{GPU3
ST GPU1|col_ind 1‘2 1|223|3 4|340|0 5|00
7 6| 8|t
2 |1 GPU2 [~ GPUI-+}+-GPU2+GPU3« GPU I-+}=- GPU2=GPY3« GPU I->{=- GPU2=GPU3
p - GI£U3|Values slol7l2]el7]s]e]1]7]o]lo]s]o]o

Fig. 4 Formatted storage example

A core part of kernel function of matrix-vec-
tor product y[n]=A[n]x[n] for a sub-matrix of
A with plan [device num]. dataN rows and m
columns are shown in the algorithm in Section
3.3, which is needed in the PBi-CGstab method.
After the coefficient matrix A is generated, PBi-
CGstab method based linear solver is used to
solve the system of linear equations. And then
generate the matrix again, keep doing this until

achieving convergence.

5 EXPERIMENT

5.1 Computation platform

In this paper, Intel (R) Xeon(R) E5520 2. 27
GHz CPU is chosen. DRAM is 12 GB. Four chips
of NVIDIA QUADRO FX 3700 graphic card,
with video memory of 512 MB, core frequency of

500 MHz, are chosen and driver version is

6.14.11.9038. OS is Windows Server 2003 X64.
Statistics is done based on different number of

GPUs for comparison use.

5.2 Experiment and data analysis

In this paper the grid generation project?' %’
in computational fluid dynamics is used to test the
practicability of linear and nonlinear solvers. A
NACAO0012 airfoil is utilized in the numerical ex-
periment in Fig. 5. The speed up ratio in different
scales is tested. Using same solvers, an O-type
grid is generated for a cross-section out of a F6
body-wing configuration with more industrial in-
terests in Fig. 6 to ensure the correctness of

solvers.
5.3 Linear solver

The average time cost of one iteration in lin-

ear solver versus the number of variables on one,

306 Transactions of Nanjing University of Aeronautics &. Astronautics

Vol. 28

Fig.5 Grids around NACA0012 airfoil

R TR T iy e ey 0y

SRS
At iAo
R A

AR R

R RS

Sttt
N

R

i 4
i
ot

Fig. 6 Grids around cross-section out of F6 body-wing

two and four GPUs is shown in Fig. 7. In this
grid generation project, the coefficient matrix is
non-symmetric with a maximum row length of
nine elements.

2001 Four GPUs

180 —o— Two GPUs
160k —4— One GPU

m
—
'S
=
T

120
100+
801

60

401

20F

0 1 1 1 1]

0 2 4 6 8
Number of variables / 10°

Time per step /

Fig. 7 Time per step versus number of variables

The factors impacting on one iteration time
cost are mainly the data exchanging between the
host memory (memory) and the device memory
(video memory) , the utilization ratio of GPU
units and the consumption of synchronization.
With the enlargement of scales the multiproces-
sors are given more data blocks and utilization ra-

tio of GPU rises correspondingly. When there is

sufficient computing time, the consumption of da-
ta exchanging and synchronization become in-
significance. The limitation scale of gird genera-
tion problem on one GPU is about 2 800 000, so
the speed up ratios of multi-GPUs are calculated
under this limitation . When scale is below
2 000 000, there are only a few GPU resources u-
tilized for two GPUs and four GPUs cases, so the
scale-dependent blocking process will induce some
fluctuation in the speed up ratio calculations in
Fig. 8. For instance, when scale is 1 605 632, the
speed up ratio is relatively low compared with the
results of other scales. In spite of this fluctua-
tion, the rising trend of speed up ratio is evident
and the stable ratios are ; Two GPUs speed up
one GPU by 1.5 and four GPUs by 2. 2 as shown
in Fig. 8.
4.0r

—s— Two GPUs to one GPU
3.5F —o— Four GPUs to one GPU

oW
W =
T T

Speed up ratio
—_ N
W (=]

—
S
T

0 3 10 13 20
Number of variables / 10°

e e
(=2,

Fig. 8 Linear solver speed up ratio of multi-GPUs to

single-GPU

5.4 Nonlinear solver

In each iteration of the Inexact Newton
method for nonlinear solver, the coefficient ma-
trix is generated and a system of linear equations
is solved. Time consumptions of the two parts are
compared in Fig. 9: The time cost of matrix gen-

eration and preconditioning time is 9% of the time

of one loop of linear solving step. This test is spe-
cially taken on two NVIDIA Tesla C1060 GPUs
with lager video memory to illustrate the result of
wild range of variable numbers. It also implies
that Jacobi preconditioner fits the multi-GPUs
solvers well.

The average time cost of one iteration in non-
linear solver versus the variable number on one,

two and four GPUs is shown in Fig. 10. Similar

No. 3 Liu Sha, et al. Solvers for Systems of Large Sparse Linear and--+ 307

001 1 One loop of linear equations solving 70-120
450 - 1 Matrix generation 10.115
| —o— Time ratio of matrix generation |
400 to one loop solving] 0.110
v 350 40.105
g -
3 300 10100 -2
S |- i Yt
S 250 L 0.095 qg)
.E 200 |- +40.090 =
150 + +40.085
100 - +40.080
50+ +40.075
0 - L [] 0.070
2 4 6 8 10 12 14
Number of unknowns / 10°
Fig. 9 Time consumptions per linear solve step and

matrix generation versus number of variables

to the linear case, the speed up ratio rises with
the enlargement of scales. The stable ratios are
that two GPUs speed up one GPU by 1.6 and
four GPUs by 2.5 as shown in Fig. 11.

22007, pour GPUS

, 2000 —o Two GPUs
£1800F —=— One GPU

= 1600}

I I L

|
NS
(=
S

ool

2 4 6
Number of variables / 10°

Fig. 10 Time per step versus number of variables

4.0r1
—=— Four GPUs to one GPU
3.5F —o— Two GPUs to one GPU

>
=)
T

Speed up ratio
- NN
>

|

S =
[)
—

0 5 10 15 20
Number of variables / 10°

g
=)

Fig. 11 Nonlinear solver speed up ratio of multi-GPUs

to single-GPU

6 CONCLUSION

In this paper, multi-GPUs linear and nonlin-

ear solvers using the PBi-CGstab method with Ja-

cobi preconditioner and the Inexact Newton
method are proposed and computational fluid dy-
namics (CFD) grid is generated by the proposed
methods. With multi-GPUs on board. engineer-
ing application problems with large scales are able
to be solved. Multi-GPUs also provide excellent
speed up to single-GPU.

This paper focuses on managing GPUs on
single board. It also can be anticipated that using
the Ethernet network connecting computers with
multi-GPUs on board can achieve huge computing
capability. And with the development of GPU
chip and GPGPU technique, more optimized

solvers can be proposed.

References:

[1] Luebke D, Mark H, Govidaraju N, et al. GPGPU:
general-purpose computation on graphics hardware
[C]// Proceedings of the 2006 ACM/IEEE Confer-
ence on Supercomputing. New York, USA: Associ-
ation for Computing Machinery, 2006: 10. 114/
1198555. 1198765.

[2] Liu Y Q. Liu X H, Wu E H. Real-time 3D fluid
simulation on GPU with complex obstacles[J]. Jour-
nal of Software, 2006, 17(3): 568-576.

[3] Zhou J F, Zhong C W, Xie J F, et al. Multiple-
GPUs algorithm for lattice Boltzmann method[C]//
International Symposium on Information Science and
Engineering. New York, USA:. IEEE, 2008 793-
796.

[4] Kriiger J, Westermann R. Linear algebra operators
for GPU implementation of numerical algorithms
[J]. ACM Transactions on Graphics, 2003, 22(3):
908-916.

[5] Bolz J, Farmer I, Grinspun E, et al. Sparse matrix
solvers on the GPU: conjugate gradients and multi-
grid[J]. ACM Transactions on Graphics, 2003, 22
(3): 917-924.

[6] Buatois L, Caumon G, Levy B. Concurrent number
cruncher: a GPU implementation of a general sparse
linear solver[]]. International Journal of Parallel,
Emergent and Distributed Systems, 2009, 24 (3):
205-223.

[7] Cevahir A, Nukada A, Matsuoka S. Fast conjugate
gradients with multiple GPUs[C] // Computational
Science, ICCS. Heidelberg, Germany: Springer,
2009, 5544 893-903.

[8] LiuS, Zhong C W, Chen X P, et al. A GPU imple-

mentation of fast solver for large scale nonlinear e-

308 Transactions of Nanjing University of Aeronautics &. Astronautics

Vol. 28

quations [C] // 2010 International Colloquium on

Computing, Communication, Control, and Manage-

ment. Hongkong, China: Intelligent Information

Technology Application Research Association,
2010:23-26.

[9] NVIDIA Corporation. NVIDIA CUDA compute uni-
fied device architecture programming guide [EB/
OL]. www. nvidia. com, 2009.

[10] Van der Vorst H A. A fast and smoothly converging
variant of BI-CG for the solution of nonsymmetric
linear systems[J]. SIAM Journal on Scientific and
Statistical Computing. 1992, 13(2): 631-644.

[11] Saad Y, Schultz M H. GMRES: a generalized mini-
mal residual algorithm for solving nonsymmetric lin-
ear systems[J]. SIAM Journal on Scientific and Sta-
tistical Computing,1986,7(3): 856-869.

[12] Sogabe T, Sugihara M, Zhang S L. An extension of
the conjugate residual method to nonsymmetric lin-
ear systems[]]. Journal of Computational and Ap-
plied Mathematics, 2009, 226 103-113.

[13] Mansfield L.

coarse grid deflation for conjugate gradient iteration

Damped jacobi preconditioning and

on parallel computers[J]. SIAM Journal on Scientif-
ic and Statistical Computing, 1991, 12 (6): 1314-
1323.

[14] Fokkema D R, Sleijpen G L G, Van der Vorst H A.
Accelerated inexact Newton schemes for large sys-
tems of nonlinear equations [J]. SIAM Journal on
Scientific, 1998, 19(2): 657-674.

[15] Martinez J] M, Qi L. Inexact Newton methods for
solving nonsmooth equations[J]. Journal of Compu-
tational and Applied Mathematics, 1995, 60(1/2):
127-145.

[16] Kalashnykova N I, Kalashnikov V V, Franco A A.

Inexact Newton algorithm to solve nonlinear comple-
mentarity problems[C] // 8th International Confer-
ence on Intelligent Systems Design and Applications,
ISDA. Taiwan China: [s.n. |, 2008,3: 67-71.

[17] Elias R N, Coutinho A L G A, Martins M A D. In-
exact Newton-type methods for non-linear problems
arising from the SUPG/PSPG solution of steady in-
compressible navier-stokes equations[]J]. Journal of
the Brazilian Society of Mechanical Sciences and En-
gineering, 2004, 26(3): 330-339.

[18] Rizzoli V, Mastri F, Cecchetti C, et al. Fast and ro-
bust Inexact Newton approach to the harmonic-bal-
ance analysis of nonlinear microwave circuits [J .
IEEE Microwave and Guided Wave Letters, 1997, 7
(10): 359-361.

[19] Hwang F N, Cai X C. A parallel nonlinear additive
Schwarz preconditioned inexact Newton algorithm
for incompressible Navier-Stokes equations []].
Journal of Computational Physics, 2005, 204 (2):
666-691.

[20] Harris M. Optimizing parallel reduction in CUDA
[EB/OL]. http://www. nvidia. com., 2007/2010-9.

[21] Sorenson R L. A computer program to generate
two-dimensional grids about airfoils and other shapes
by the use of poisson’s equation[R]. NASA TM
81198, 1980.

[22] Zhang Z, Tsai H M. Comparison of Eca’s method
with Hilgenstock’ s method in 2-D grid generation
[C]//10th ISGG Conference on Numerical Grid Gen-
eration. New York, USA: Curran Associates Inc. ,
2007 :59-75.

[23] Thompson] F, Weatherill N P. Aspects of numeri-
cal grid generation: current science and art[R]. A-

IAA-93-3539-CP, 1993.

ETEGPU M KRBILEMIELETEAHR K

x|

é*ﬁﬁiili

BR 2%

(. PYAE Tk R TR M 2 S B 2 E B R S, 4%, 710072, HE;
2.6 Tk K2 m Mgt st W%, 710072, HE ;
ML b K% %5 K TR, 194, 710072, HED

FEE JEAL IR TR AR BB 7 B R M B AR R Ty R
ATRA o KT 52 B Sy Y v 28 38 3] 1) RS ARy R A R A 3R e)
o A A A, EDE AL B ES (GPUD AR 15 42 1Y
CPU ., ¥ ZH GPU Ml #4E R G STV I144 PBi-CGstab
J5 1 fll Inexact Newton J5 ik #ATiE G 2 GPU J47T R LA
WAE R 2 GPU SRFAS09A%C B s SR Al R TIZR P AR 4R

PR . A Z GPU RIGSHEREY & T . GPU K
AR SUVF BTSR[] i IS T4 Al R s L

K17 :GPGPU; CUDA; &ty fed; R4 Jr fe 45
Inexact Newton J7i%; Bi-CGstab J7 ik

FES%ES . TP391

(Executive editor; Zhang Huangqun)

