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Abstract: When Kalman filter is used in the estimation of Vasicek term structure of interest rates, it is usual to
assume that the measurement noise is uncorrelated. Study results are more favorable to the assumption of corre-
lated measurement noise. An augmented state Kalman filter form for Vasicek model is proposed to optimally esti-
mate the unobservable state variable with the assumption of correlated measurement noise. Empirical results indi-

cate that the model with sequentially correlated measurement noise can more accurately describe the dynamics of
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the term structure of interest rates.
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INTRODUCTION

Term structure models are one of the key
metrics in financial analysis. The studies on these
models are the key to understand monetary policy
effects and its transmission mechanism!". Dy-
namics modeling of the term structure of interest
rates refers to two problems: One is, in terms of
cross-section dimension, to depict the relationship
between zero-coupon bond yields and the time to
maturities; The other is, in terms of time series
dimension, to specify the dynamics of the term
structure over time, which are mainly the unob-
servable state variables. The two dimension data
constitute panel data.

Some references have focused on the affine
class of term structure models because of their
analytic tractability®™®. In the context of affine
models, the yields to maturity are affine functions
of state variables. An effective and extensively
used methodology to optimally estimate unobserv-
able state variables from noisy panel data is
Kalman filter'’. Examples especially in the affine
area are Refs. [5-6], etc. In most references elab-
orating on term structure models using estimation

technique of Kalman filter, measurement noise is

an filter; sequentially correlated noise; state estima-
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assumed to be independent and identically dis-
tributed (i. i. d) for computational convenience.
However, when allowing for a general measure-
ment noise structure for analyzing the affine class
models, De Jong found the strong serial correla-
tion in the measurement noise for one- and two-
factor models™, but did not provide a solution to
this problem. Dempster and Tang examined the
affine models for both bond yields and commodity
futures and found that the main issue regarding
measurement noise was serial correlation™. Then
they took the commodity futures model as an ex-
ample and proposed an augmented state space
form containing ” perfect” measurements. i. e. ,
containing no noise, for the estimation of the
model™!. The purpose of this paper is to develop
another augmented state space form containing
sequentially correlated noise for an affine term

structure model.

1 SYSTEM MODELS AND STATE
SPACE MODELS

Vasicek model and cox-ingersoll-ross (CIR)

model are the two most widely used affine

[9-10]

ones" In one-factor Vasicek model, the unob-
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servable state variable, that is, the instantaneous
interest rate, follows Ornstein Unlenbeck process
and therefore is assumed to revert to a long term
rate. The main shortcoming of this model is that
since the distribution of the state variable is nor-
mal, the model permits negative interest rates
with a relatively low probability. CIR model uses
a mean-reverting square-root process and pre-
ludes negative interest rates. Moreover, Vasicek
is a Gaussian affine model and CIR model is a
non-Gaussian one. A non-Gaussian system maybe
loses certain accuracy in the linear Gaussian filter-

b So one-factor Va-

ing process of Kalman filter
sicek model is chosen to demonstrate the devel-
oped strategy in this paper despite its possible
negative outcome. What' s more, from a prag-
matic point of view, the less realistic model is
much simpler to work with and eases some esti-

mation difficulties.
1.1 System state space models

The Vasicek process satisfies the univariate
stochastic differential equation
dr(t) = k[0 — () ]dt + odw () (D
When the short rate » (z) deviates {rom its
long term mean @, the process will return to this
mean at the mean-reverting intensity 4. The term
of K[ 0—r(¢)]dt is the instantaneous drift, o’ the
absolute volatility of the short rate , and
w(z) the standard Brownian motion. In terms of
the state space form within Kalman filter frame-
work, this equation is referred to as the transition
equation. To apply Kalman filter, we need to de-
rive the expressions for the conditional mean and
variance of the unobservable state variable pro-
cess over discrete time intervals. Considering the
length of the paper, the details are not discussed.
For the derivation, see Ref. [12]. The first two
moments of the Gaussian transition density of

r (1) is

F D) () ~ N( 0(1 — e ") 4 e (p),

6_2 2k )

o (1 —e )’ (2)
where Ar is the time interval. Then the transition
equation is specified as follows

r(@ 4+ 1) =00 —e ™) +e @) + wk)
(3

where w(¢) is a random variable with zero mean

and the variance given by ) (1—e #%).

UZ
2k

As to measurement system, the term struc-

ture z(z,1) is

- A(T) B(7)
T

z2(t,T) = + (1) D

T
where ¢, T and =T —t denote the current time,
the contract maturity and the time to maturity re-

spectively. The parameters A(z) and B(z) satisfy

the following ordinary differential equations
(ODEs)™", that is
B'(v) + kB() =1 G),
— A @ =40 F[BO + B =0
(6)

where A represents the market price of risk.
ODEs can be solved by numerical integration with
the boundary conditions: B(0)=0,,«, with m re-
ferring to the number of state variables and
A(0)=0. The measurement Eq. (4) is completed
with

JB(r) - %(1 et

< 7
LA(T) _7[B() — 7] "B (1) e
N k? 4k
here 7= 0— 4|~
where = ( k ) 2 .

In the Vasicek model, the measurement e-
quation represents the affine relationship between
the zero coupon bond yields and the unobservable
state variable. Following the assumption that the
measurement noise in bond yields is sequentially
correlated™, the measurement equation in terms

of state space form for observable yields is given

by

e+ =—242 4
@m D v+ D (8)

where the measurement noise is generated {rom
v+ 1D =¥Yv@ +ul+ 1 (9)
where ¥ is a n X n matrix with n referring to the
number of observations and u(¢z+1) the Gaussian
random vector sequence (white noise) with zero
mean and covariance matrix R. In addition, w(z)
and u(z) are independent. The matrices ¥ and R

are specified as
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v, 0
0 \pz 0
Y= . L. . (10)
0 0 w,
R 0 0
0 R; 0
R= | L . an

0 0 = R
Both ¥; and R; are defined between — 1 and 1 with

i=1,,m.
1.2 System augmentation models

The state is first augmented to include v (z+
1). Then the measurements are " perfect”, i.e. ,
containing no noise. The perfect measurements
lead to singular problem within the framework of

131 To alleviate the problem

Kalman-Bucy theory"
in this case, we reconstruct the structure of the
measurement noise by
Vae+ 1) =v@+1 + e+ 1) a2
where €(z+41) is a white noise with zero mean and
covariance matrix E
Ef 0 0
p— | B0 (13)
0 0 e E
where —1<CE,<{1 with /=1,

ment that the covariance of E is small relative to

,n. The require-

V (t+1) gives the model little impact while pro-
ducing filtered estimation. The state space form

of Vasicek model after augmentation becomes

X+ D=C+0X) +W1) v

zt+1)=— é+HX(l+l)+£(t+1) (15

where X (t + 1) = [rG¢+1) v+ ], C=
[(01—e ") 0, ] W =[w®) e)]". H=
[g I,,J , and the new covariance matrix for

W () is Q2. The augmented matrices are

— kA
o — [eo H (16)
iz a2k
o_ [2/@(1 e ) 0} an
0 R

The method for optimal filtering developed

by Kalman is applied to the augmented state space

models as followsH*

XU+ 1[t) =C+ OX )
PG+ 1)) = OP(|HOT + Q
XG+1t+1D) =X+ 1|t) +KG@+ 1)+

[z(ﬁ D+ A mxa 1\t>}

K(t+1) =P+ 1|0OH" -
[HP(t + 1|H)H" + E] !

P+ 1|t+1)=[I—Kt+1)H] -
PG+ 1101 — K¢+ DH]" +
K(t+ DEKG@ + D"

(18)
where X (¢ + 1 | ¢+ 1) is the optimal estimate of
XG@H|t+H), K+ the filter gain, and P(t+1 |
t+1) the covariance of the error between the actu-
al X(z+1]z+1) and its estimate X (- [2-+1).

2 EXPERIMENTAL RESULTS

In this experiment, we use the developed
augmented Kalman filter system to receive the
bond yields as input. The monthly data used for
the following example are taken from the website
of Bank of Canada and the data series cover the
period from January, 1991 to December, 2000,
totalling four monthly yield series and 120 time
series. The zero coupon bond yields incorporated
into the proposed measurement system include
four observations with 0.25-year, 0.50-year,
1. 00-year, and 5. 00-year time to maturities.

The performance criterion used for evaluat-
ing the proposed augmented Kalman filter algo-
rithm is the residuals of the model, defined by the
difference between the observable bond yields and
the filtered yields. The residual results from the
correlated noise assumption are compared with
the results from the i.i. d assumption. Tables 1
and 2 provide the mean and standard deviation of
the residuals with both assumptions. The mean is
calculated as the time series average of residuals
for four observations respectively and it should be
close to zero. Generally speaking, the model
slightly underestimates the bond yields. The
model with correlated noise assumption provides a
substantially better fit of the term structure data
than the one with i.i. d assumption. The mean
and standard deviation in the former are smaller

than those in the latter.
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Table 1 Residuals of Vasicek model with correlated noise assumption
Maturity 0. 25-year 0. 50-year 1. 00-year 5. 00-year
Mean —0.000 102 0. 000 215 0. 000 697 0. 000 902
Standard deviation 0. 000 174 0. 000 294 0. 000 302 0. 000 611
Table 2 Residuals of Vasicek model with i. i. d assumption
Maturity 0. 25-year 0. 50-year 1. 00-year 5. 00-year
Mean 0. 001 298 0. 004 866 0. 005 490 0.008 116
Standard deviation 0.001 548 0. 001 469 0. 001 461 0.001 543
The comparison results of the model with 0.070
...... o True
different measurement noise structures are illus- | e Estimate/white noise
trated in Figs. 1-4, which graph the filtered term 0.065 | Estimate/correlated noise
structure and the observable term structure for
four observations respectively . In Figs . 1 -4 , 0.060 1
1

" Ture” represents the observable term struc-
ture, " Estimate/white noise” the filtered term
structure with white noise assumption and ” Esti-
mate/correlated noise” the filtered term structure
The model fits
well on the short end of the yield curve but a little

with correlated noise structure.

bit poorly on the long end. The accuracy of this
technique appears to somewhat deteriorate with
the fourth observation. This should not be too
surprising and this is probably because we use a
one-factor model. According to Ref. [ 7], with
more factors adding to the model, the model will
give more adequate fitting result. For most one-
factor model, the only factor is always considered
516l - Usually ,

in a three-factor term structure model, the second

to be the instantaneous short rate

factor is the stochastic long-run mean of the short
rate and the third one is the spread factor which
represents the spread between rates of different
maturities, especially the difference between the
short end and the long end™"*’. Deductively, with
adding the second and third factors, more accu-
rate filtering result, particularly that of the long
end, can be achieved. As a result, although they
are slightly less encouraging for the fourth obser-
vation, the results are on the whole illustrative of
the point that the model with correlated noise as-
sumption provides a substantially better filtering
effect than the model with white noise assump-
tion. Based on the above analysis, we can con-
clude that the correlated noise assumption is more
reasonable and the proposed augmented Kalman
filter is a successful technique for determining the

unobservable state variable.

z(?)

0.055

0.050 ¢

0.045 . . L

0 20 0 60 80 100

Time/month
Fig.1 Comparison results for 0. 25-year
0.070
...... o True
—————— Estimate/white noise
0.065 —— Estimate/correlated noise

0.06089/
0.055
0.050
0.045 20 40 60 80 100
Time/month
Fig. 2 Comparison results for 0. 50-year
0.070

...... o True
______ Estimate/white noise

0.065 R 0@

0.050

Estimate/correlated noise

0.045, 20 20 60 80 100
Time/month

Fig.3 Comparison results for 1. 00-year
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0.070
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Time/month

Fig. 4 Comparison results for 5. 00-years

3 CONCLUSION

The goal of this paper is to consider the prac-
tical details in estimating the unobservable vari-
able for the one-factor Vasicek term structure
model. Following the assumption of sequentially
correlated measurement noise, the term structure
estimation technique based on augmented Kalman
filter is developed, which overcomes the singular
problem by adding a small white measurement
noise. The experimental results illustrate the per-
formance of the developed filter technique for the
model estimation and show that the model with
sequentially correlated noise assumption works
much better than the model with i.1i.d assumption
in estimating the unobservable state variable for

Vasicek term structure model.
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