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Abstract: To avoid the aerodynamic performance loss of airfoil at non-design state which often appears in single

point design optimization, and to improve the adaptability to the uncertain factors in actual flight environment. a

two-dimensional stochastic airfoil optimization design method based on neural networks is presented. To provide

highly efficient and credible analysis, four BP neural networks are built as surrogate models to predict the airfoil

aerodynamic coefficients and geometry parameter. These networks are combined with the probability density

{unction obeying normal distribution and the genetic algorithm, thus forming an optimization design method. Us-

ing the method, for GA(W)-2 airfoil, a stochastic optimization is implemented in a two-dimensional flight area

about Mach number and angle of attack. Compared with original airfoil and single point optimization design air-

foil, results show that the two-dimensional stochastic method can improve the performance in a specific flight

area, and increase the airfoil adaptability to the stochastic changes of multiple flight parameters.
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INTRODUCTION

Along with the development of airfoil design
technology, many design methods have been in-
vestigated, including aerodynamic design by opti-
mization"?'and shape parameterization™®. It be-
comes regular to design new airfoils that match
different mission requests. In the process of air-
foil numerical design optimization, the optimal
solution of airfoil shape is often searched for a
certain design point (like mid-cruise). Airfoil
shape obtained through this method usually has
good aerodynamic performance at the design
point, but aircraft actually flights within an oper-
ation area. So the optimization running for a sin-
gle point often brings an evident performance loss
when it departures from the design point., which
is obviously not expected. Multi-point design
provides a tool for this problem. It can mitigate
the performance loss at non design state, and has
been used in many fields like low speed airfoil de-

]

sign'®, transonic airfoil design'™, reflex airfoil
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design"®', and so on. The increases of design
points are restricted after all, so the multi-point
design is hard to completely solve the perfor-
mance loss at non design state.

Stochastic optimization provides a further
way to solve this problem. The optimization de-
sign runs for a whole flight area, instead of some
design points, and makes the airfoil have better
adaptability to actual flight environment, like the
design application in drag reduction of transonic
airfoil about specific range of Mach number™ !,

At present, airfoil stochastic optimization de-
sign mainly focuses on one stochastic vari-
able® ', which can be seen as a one-dimensional
stochastic optimization. However, during the ac-
tual flight, there is often more than one uncertain
factor. One-dimensional stochastic optimization
can lack of adaptability to the changes of multi
factors, while the design process accounting for
multi stochastic variables can provide a better
match for airfoil actual application. Also, consid-

ering the huge cost of aerodynamic analysis in
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stochastic optimization, it is necessary to find a
highly efficient and credible computation method
to reduce the analysis cost a lot. In this paper, a
multidimensional stochastic optimization method
based on neural networks is presented and imple-
mented within a validation process for the re-

design of GA(W)-2 airfoil.

1 MULTIDIMENSIONAL STOC-
HASTIC OPTIMIZATION

As a result of influences caused by uncertain
factors, actual flight of aircraft often changes
around its design point, for example, the change
may appear at Mach number, angle of attack or
other parameters. Current stochastic optimization
design mainly for Mach number may cause the
airfoil have good adaptability to the change of
Mach number, but lack of consideration about
changes of other flight parameters.

Multidimensional  stochastic  optimization
method can account for this problem. From the
point of mathematics, two-dimensional model is a
basic model of multidimensional stochastic opti-
mization, so a two-dimensional mathematic model
of stochastic optimization is presented and used in
the stochastic optimization design of GA (W)-2
airfoil. The higher-dimensional design application
of stochastic optimization can be further extended
from this model.

One kind of mathematic description of one-
dimensional stochastic optimization problem is to
minimize the mathematic expectation of object
function in the change range of stochastic vari-
able, like the drag minimization about specific

range of Mach number, so we have
min[J ca(X ,Ma) X p(Ma)dMa |
Ma

s. t.
Xecb (D
Ma,,;,, < Ma << Ma,,,

g, (X, Ma) <0
hj(X,Ma) =0

where X is the design variable, D the design

1= 1,2,",m

J=1:2,m

space, Mach number Ma the stochastic variable,

p the probability density distribution about Ma,

cqs the object function, and g,(X,Ma) ,h;(X,Ma)
are the inequalities and equalities design con-
straints.

Through the specific range of Ma, the mini-
mal mathematics expectation of ¢, is obtained,
which makes ¢, have good adaptability to the
change of Ma. By extending one-dimensional
mathematic model, we can obtain a mathematic
description of two-dimensional stochastic opti-
mization, that is

min[ﬂf(X,tl,tz) X p(ty st,)de,dt, ]

1°%2
s. t.
XebD

tlmin < tl < t]max

(2)

Lomin << 12 <X Loma
gt(X7t1’t2) < 0
hj<X9t19t2> =0

= 1.2, ,m

J=1.2,m
where ¢, and ¢, are the stochastic variables, p is
the two-dimensional probability density distribu-
tion about ¢, and ¢,.

The change from one-dimensional model to
multidimensional model greatly improves the
adaptability of object function to the environ-
ment. In this paper, the two stochastic variables
are chosen, i.e., Ma and angle of attack a. The
central point of flight area is at Ma=0. 55, a=0.
Around this central point, ranges of Ma and a are
enlarged, and a two-dimensional flight area of
airfoil is obtained, where Ma € [0.5,0.6], a €
[—1.5°,1.5°].

2 GEOMETRY PARAMETERIZA-
TION OF AIRFOIL

There are several methods™® for geometry
parameterization of airfoil, including bump func-
tion method, PARSEC method and others. The
bump function method expresses new foil geome-
try as the linear combination of a basis airfoil and
a set of perturbation functions. The coefficients
of perturbation functions are geometry design

variables, as shown below

n

y(x) = y,(x) +

b=

a/efk(l”) (3)
1
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where y,(x) is the basis airfoil, f,(2) the bump
function and @, the design variable. Hicks-Henne
function is used as bump function, that is

IO.ZS(1 . I)efzo.l k — 1

fk(f)zl (4

sin® (ma*™®) k>1
where e(k) = l?gO. 5, 0<<x <1.
ogx,

The original foil used in design optimization
is GA (W)-2 airfoil, with total 89 points dis-
tributed at both surface of airfoil. There are five
bump functions distributed on each surface,
which makes ten geometry design variables for

this problem.

3 CONSTRUCTION OF NEURAL
NETWORK

In design practice, huge computation cost of
numerical optimization of aerodynamic shape is an
important restriction. Under this restriction, the
number of design points for multi-point design
method is limited. Stochastic optimization needs
to compute one or even multiple integral about
object function, which makes the computation
cost increase at orders of magnitude. This situa-
tion makes the highly efficient aerodynamic analy-
sis become very attractive.

Due to the ability of fast computation, surro-
gate model has already been used in design

works, like prediction of aircraft design coeffi-

[12-13] [14-15]

cients , airfoil design , aerodynamic opti-
mization''* and so on. Compared with other re-
sponse surface methods based on algebraic poly-
nomial, neural network does not depend on accu-
rate mathematic expression, while it can learn
from input sample data and have well approximat-
ing ability for nonlinear problem. The combina-
tion of neural network and stochastic optimization
method provides feasibility for multidimensional
stochastic airfoil optimization design.

For two-dimensional stochastic optimization
in this paper, BP neural network is used to build
surrogate model to provide highly efficient analy-
sis. Four independent BP network models are

built to simulate lift coefficient C., lift-to-drag

ratio L/D, pitching moment coefficient C,, and

thickness-to-chord ratio #/¢ of GA (W)-2 airfoil

within its two-dimensional flight area.
3.1 Neural network model

(1) Lift prediction

For lift coefficient C;, a two-layer network is
used, including geometry design variables X,
Ma, a as inputs, and C; as output. The two-lay-

er network for C, is shown in Table 1.

Table 1 Two-layer network for C,,

Hidden layer-1 Output layer
Neuron 10 1

Layer

Transfer function tansig Pure linear

(2) Drag prediction

Prediction of lift-to-drag ratio L/D is more
difficult than those of other three parameters.
First, a multi-layer neural network is established
to predict drag coefficient Cp. It has achieved a
well prediction precision, with correlation coeffi-
cient R of 0.996 9. Most of prediction errors
about Cy, are within £ 2 drag units. The training
result of Cp is shown in Fig. 1.

Unfortunately, in the following optimiza-
tion, it is found that due to small value of Cp,
prediction of L/D through the ratio between lift
and drag coefficients, i.e. , L/D=C./Cp, is sen-
sitive to the prediction errors of C. and Cyp,
which even considerably affect the optimization
result. So, instead of predicting Cyp,, it prefers to
predict L/D directly. A three-layer network is
used for this. The inputs are geometry design
variables X, Ma, a, and the output is L/D. The

three-layer network is shown in Table 2.

8.5

o Data point
8.0 — Best linear fit
75F Output=Target

7.0t 2
6.5 G-
6.0 P 2

5.5 :
5.0
45

Output /107

4.0 1 1 1 1 1 1 1 1
40455.0556.06.57.07.58.08.5
Target /107

Fig.1 Training results of Cp
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Table 2 Three-layer network for L/D

Layer Hidden layer-1 Hidden layer-2 Output layer
Neuron 20 10 1

Transfer

logsig tansig Pure linear

function

(3) Pitching moment prediction

Network structure for pitching moment coef-
ficient C,, is same to that for C,, and the output
is C,, about 1/4 chord. The two-layer network
for C,, is same to Table 1.

(4) Airfoil thickness prediction

A two-layer network is used for thickness-
to-chord ratio t/c, including geometry design
variables X as input, and z/c as output. The two-

layer network for ¢/c is also same to Table 1.
3.2 Sampling and Training

To predict aerodynamic coefficients and
thickness accurately, a set of sample data is need-
ed to train the four neural networks established
before. This data set is generated according to the
design of experiment (DOE) technique named
Latin hypercube sampling (LHS). DOE technolo-
gy improves the quality of data set during sam-
pling, and LLHS makes the data set have a reason-
able spatial distribution and a sufficient coverage
of the sampling space. Under acceptable compu-
tation cost, 1 500 samples are generated in the
corresponding sampling space, and then analyzed

by a subsonic airfoil code XFOILM™,
code, XFOIL is widely used in design and analy-

As a panel

sis of subsonic airfoil, and can provide credible
prediction for this kind of problem. Range of each

parameter is shown in Table 3.

Table 3 Training set

Parameter Minimum value  Maximum value
T t
e geometty —0.000 3 0. 000 3
variables
a/(*) —1.5 1.5
Ma 0.5 0.6

Table 4 shows training results for the four
neural networks. It can be seen that for C.,C,
and #/c¢, correlation coefficient R is all above

0.99. For L/D, although there are some small

departures between the neural network predic-
tions and the samples, the result is still accept-
able. And to predict L/D directly is better than
the way of L/D=C./Cp. These four established
neural networks provide suitable surrogate mod-

els for the following optimization.

Table 4 Training results

Neural network R
Neural network for C\. 0.999 91
Neural network for L/D 0. 983 69
Neural network for C,, 0.998 76
Neural network for ¢/c¢ 0.999 98

4 TWO-DIMENSIONAL STOCHA-
STIC OPTIMIZATION

The best way to build probability density dis-
tribution is to collect lots of actual flight data of
aircraft, but they are often hard to obtain. In nat-
ural and social phenomenon, lots of stochastic
variables obey or approximately obey normal dis-
tribution. So for GA (W)-2 airfoil, we suppose
that the probability density p obeys a two-dimen-
sional normal distribution within the two-dimen-
sional flight area about Ma and a, and the peak
value of p locates at the central point of flight

area, as shown in Fig. 2.

Fig. 2 Probability distribution of Ma and «

P(Ma ,a) =

2
2100,

1—p
-1 [(Ma —m)’
2(1 — p»
. - _ 2
p(Ma ) (e — 1) 4 (a 2#2) }} 5)

0,0, 0,

exp

2
4

2

where ¢, = 0.55,¢, = 0,0 = 0,0, =0, = 1.
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Optimization object is to make the L/D per-
formance of airfoil have the best adaptability to
the changes of Ma and a. The four neural net-
works established before are used to predict aero-
dynamic coefficients and airfoil thickness. Several
design constraints are set at the central point of
flight area, about the airfoil point aerodynamic
performance 71',,. The area aerodynamic perfor-
mance 7T ,.. is used to estimate airfoil adaptability
to Ma and a, shown as

T... = H %(Xg,Ma,a) X p(Ma,a)dMada

Ma,a
(6)
where X, is geometry design variable. So the op-
timization problem becomes

(max (T )

s. t.
<t/c = 0.125 P
Cip = 0.60

Cope =—0.13
where subscri "pt” refers to airfoil point aerody-
namic performance at the central point.

Genetic algorithm (GA) is used as optimiza-
tion algorithm. As an artificial intelligence tech-
nology, GA simulates the evolution process of bi-
ology population under the natural environment,
and forms global optimization ability. It dose not
depend on the computation of grads information,
and has a broad flexibility to design practice.
Here the size of population is set to 150, with a
crossover fraction of 0. 8, and elite count of 3. To
speed up computation, three CPUs of four-core
processors are used for parallel computing under
MATLAB environment. Flowchart of two-di-
mensional stochastic optimization combined with

neural networks and GA is shown in Fig. 3.

5 RESULT AND ANALYSIS

As a comparison, while running the two-di-
mensional stochastic optimization, another single
point design optimization is also running for the
central point of flight area, using the same GA
settings. At the central point, through XFOIL

analysis, Table 5 shows the results of original

Geometry design
variables

Four neural
network Probability
models distribution

3 L

GA
parallel
optimizer

Object function &
constraints

Optimized airfoil

Fig. 3 Flowchart of optimization

Table 5 Performance comparison at flight area

central point

Airfoil Cion L/Dy Crnp
GA(W)-2  0.6319 124.4

t/c/%
—0.137 5 12.9

Single point e 0\ 1392 —0.1296  13.2

design

2-D

. 0.623 7 136.7
stochastic

—0.1273 13.3

GA (W)-2 airfoil, single point design optimization
airfoil and two-dimensional stochastic optimiza-
tion airfoil, here Ma=0.55 and a=0.

At the central point, it can be seen that both
optimizations satisfy the design constraints, and
improve airfoil performance to some extent. For
single point design, the airfoil has the best L/D
performance, which increases by 11.9% com-
pared with GA (W )-2.

stochastic optimization, L/D increases by 9. 9%,

For two-dimensional

which means a good aerodynamic performance at
the max flight probability position. Fig. 4 shows

geometries of three airfoils.
0.10

-- GA(W)-2
— 2-D stochastic

0.08
0.06
0.04

~ 0.02
0.00
-0.02
-0.04

_00060.0 0.1 02 03 04 05 0.6 0.7 0.8 09 1.0

X

Fig. 4 Geometries of three airfoils
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Using XFOIL analysis, Figs. 5, 6 compare
area aerodynamic performance among the three
airfoils , where Ma € [0.5,0.6],
a€ [—1.5°1.5°].
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Fig. 5 Comparison of area performance between

GA(W)-2 and 2-D stochastic airfoils
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Fig. 6 Comparison of area performance between sin-

gle point design and 2-D stochastic airfoils

Compared with original GA (W )-2 airfoil,
the two-dimensional stochastic optimization effi-
ciently improves the L/D performance in the
whole flight area, makes T, increase by 12. 5%,
and makes the airfoil performance better match
high probability flight area. Compared with sin-
gle point design result, the two-dimensional
stochastic optimization method can effectively
avoid the performance loss at non design state
which exists at single point design airfoil, make a
more harmonious performance in the whole flight
area, and enhance airfoil adaptability to Ma and
a. The optimization results also show that,

stochastic optimization based on neural network

surrogate model can obtain favorable optimization

result under suitable conditions.

6 CONCLUSION

Based on highly efficient analysis of neural

networks and global search ability of genetic algo-

rithm, a design method for two-dimensional

stochastic airfoil optimization is presented, and

validated through the optimization for GA (W)-2

airfoil. The performance comparisons among three

airfoils show that the two-dimensional stochastic

optimization method can obtain a whole perfor-

mance improvement in specific flight area, trade

off airfoil aerodynamic performance between high

and low probability areas in flight, match the air-

foil performance to the mission requirement, and

enhance airfoil adaptability to stochastic changes

of multiple flight parameters.
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