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Abstract: The attitude control problem and the guidance problem are solved in 3-D for a buoyancy-driven airship
actuated by the combined effects of an internal air bladder which modulates the airship’s net weight and of two
moving masses which modulate its center of mass. A simple and clear modeling is introduced to derive the 8 de-
gree of freedom (DOF) mathematical model. Nonlinear control loops are derived through maximal feedback lin-
earization with internal stability for both dynamics in the longitudinal plane and in the lateral plane. Based on a
singular perturbation approach. the superposition of these two control actions in the longitudinal plane and in the

lateral plane is shown to achieve the control of the dynamics in 3-D space. The simulations of the airship tracking
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specified attitude . moving direction and speed in 3-D space are presented.
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INTRODUCTION

Airships are no longer used for passenger
transportation, however, they are useful for oth-
er purposes, such as surveillance, communication

L4 Major

relay, and heavy lift transportation
countries in the world have independently set up
new projects, for instance,the hybrid airship pro-
ject of Northrop Grumman, Lockheed Martin's
project, European ESA-HALE project™®), and
some others®,

The structure and operating mechanism of a
buoyancy-driven airship was explicitly depicted in
Ref. [ 7], which employed an internal air bladder
to modulate the airship’s net weight while one or
more moving mass actuators modulated its center
of mass (Figs. 2-3). Through appropriate cycles
of its actuators, the airship can navigate with
higher efficiency than conventional actuators
(diesel or electrical engine, elevator, rudder,

etc. ). This buoyancy-driven concept was initially

conceived by Henry Stommel"®, and it motivated
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the development of several operational underwa-

W This mechanism was introduced

ter gliders
to generate a new-kind airship by Purandare™™.

The physical properties and the longitudinal
dynamics of the buoyancy-driven airship was ex-
plicitly analyzed in Ref. [7]. For the underwater
glider which uses the same mechanism, a com-
plete 8 degree of freedom (DOF) mathematical
model was derived in Ref. [9]. Due to the exis-
tence of the internal DOF, the dynamics of this
mechanical system becomes complex and yields an
under-actuated system. Some works are dedicated
to analyze the longitudinal dynamics. A linear
controller based on linear-quadratic regulator
(LQR) was derived in Ref. [9], and Lyapunov
approach was used in Ref. [12] for the underwa-
ter glider. Based on some simplified special cases,
the longitudinal dynamics were analyzed and a
nonlinear controller was derived based on a maxi-
mal feedback linearization with internal stability
in Ref. [13] for the buoyancy-driven airship.

For the modeling of the 8-DOF dynamics of
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this mechanical system in Refs. [9,12], the sys-
tem dynamics is described in terms of the total
system momentum and the moving masses mo-
mentum, which leads to a useless complexity of
the modeling. This paper adopts a new view for
modeling; the rigid body and the moving masses
are two independent subsystems, and the cou-
pling of these two subsystems only consists of a
set of a forces and moments. The advantage of
this approach is that it makes the model easy to
be derived since the modeling of the rigid body of
this airship will be similar to that of the conven-

04151 Another is that it presents the

tional airship
interconnections of this moving masses controlled
buoyancy-driven airship.

The attitude and guidance of the airship are
controlled by two similar moving masses and the
net buoyancy, etc,as shown in Fig. 1. The atti-
tude of the airship is mainly controlled by the po-
sition of the moving masses which is represented
by r, in this paper, the guidance which consists of
the speed V and two flight path angles mainly de-
pends on the attitude, the net buoyancy, and

aerodynamic forces.
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Fig. 1 Structure of buoyancy-driven airship model

The longitudinal dynamics of the buoyancy-
driven airship was analyzed in Ref. [13] based on
some assumed simplified cases and the maximal
feedback linearization approach, and a nonlinear
controller was derived for the attitude control and
the guidance in longitudinal plane. The lateral
dynamics is similar to that of the longitudinal
plane, only the parameters differ. By a similar
analysis approach as what was done in the longi-
tudinal plane in Ref. [13], a nonlinear controller
is derived for the attitude control and the guid-
ance in the lateral plane in this paper. Thus, for
both longitudinal and lateral dynamics, nonlinear
controllers are derived which solve the maximal
linearization problem with internal stability.

To solve the control problem in 3-D space

with results derived for 2-D cases, a singular per-
turbation approach is adopted as a tool to combine
the two controllers designed for the longitudinal
and lateral planes. In this case, the longitudinal
dynamics is assumed to be slow and the lateral
dynamics is assumed to be fast. The simulations
show that this control scheme is acceptable for
the control problem in 3-D space. It is also valid
and instrumental for similar mechanical systems,
such as underwater gliders and re-entry vehi-
clest'™,
The singular perturbation approach devel-
oped is different from the standard singular per-
turbation approach for the aerial vehicles depicted
in Ref. [17]. Usually the problem is split into the
attitude control problem and the guidance prob-
lem. Here, the singular perturbation method is a
tool which allows superposing both control loops
for longitudinal and lateral motions.

Some assumptions are made here. In these
first results, the theoretical issues are argued and
disturbances as the wind, variation of air density

or of temperature are not considered.

1 VEHICLE DYNAMICAL MODEL

1.1 Buoyancy-driven airship

The structure and the operating mechanism
of an airship driven by moving masses and adjust-
ing weight were explained in Ref. [7]. The basic
structure of the airship is shown in Figs. 2-3. The
airship hull is inflated with helium and ambient
air in two isolated bladders. The internal air blad-
der is symmetrical and elastic and its mass can be
adjusted by a blower and valves. Since the volume

of the airship is invariant ., the buoyancy of the

@ Internal air bladder
Moving mass

Fig. 2 Top view of airship
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@ Internal air bladder
@ Moving mass

Fig. 3 Side view of airship

airship is constant. By adjusting the mass of in-
ternal bladder, the airship will rise or fall down.

There are two moving masses located at the
bottom of the airship, and they can move along ¢,
and e, directions of the body frame. According to
the motion of the moving masses, the center of
gravity of the airship CG also moves, which leads
to the variation of the attitude of the airship.

The airship is also equipped with some fins
which help to increase the aerodynamic force, but
there is neither rudder nor elevator.

The operating mechanism is briefly described
as follows. When releasing air from the air blad-
der, the mass of the airship reduces, thus, the
net lift becomes positive and the airship rises.
When the moving mass moves to the —e, direc-
tion, the airship gets a positive pitch angle 6,
which yields a forward aerodynamic component
force acting on the airship. This component force
makes it move forward (the BC segment of
Fig. 4). Conversely, when pumping air into the
air bladder, the mass of the airship increases, the
airship falls down. When the moving mass moves
to the e, direction, the pitch angle ¢ becomes
negative, which still yields a forward aerodynam-
ic component force. Therefore the airship moves
downward and forward (the AB segment of
Fig. 4). If the moving mass moves to the sides,
the airship will roll. Due to the coupling of roll,
pitch and yaw moments, the airship turns to right
or left direction.

Two limiting assumptions are made at the
outset of building the full non-linear 8-DOF

mathematical model for practical reasons:

k B

Fig. 4 Typical trajectory in longitudinal plane

(1) The airship forms a rigid body such that
aeroelastic effects can be ignored;

(2) The airframe is symmetric about the ee,
plane, and the resulting center of mass of all air-
ship components lies in the center of the volume
O, except the two moving masses.

For 8-DOF mathematical model, different
from Refs. [9,12] where the airship body and the
internal moving masses were viewed as a global
system, the rigid body and the moving masses m
are viewed as independent parts here (as shown in
Fig. 5). Thus, the modeling of the conventional
airship'"! is referable here. The moving masses
are modeled independently. The only coupling be-
tween two parts is force u which is considered to

be the control.

Fig.5 Rigid airframe and moving mass

1.2 Dynamics of moving mass

As depicted in Fig. 5, the rigid airframe and
the moving mass are assumed to be immersed in
static atmosphere without disturbance. The ve-
locity of the ballast in the body frame v, is

v,=v+7r,+0QXr, (D
and the total external force acting on the moving
mass is given by

F,= (mv,) X Q+ mgR k +u (2)
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According to Newton's Second Law and
Egs. (1,2), the acceleration of the moving mass

is derived as
P,=—v—QXr,—QXF +gR k) +
L, x 0+ w (3)
m

Note that the mass is only moving in a plane
parallel to e;e, here, which means that it cannot

move along the e; axis and r,; in r, is constant.
1.3 Dynamics of airframe

The dynamic model of the airframe is stated
as

My =F,+ F, + F¢ + F, 4

JQ=M,+ M, + M, + M, (5)

Each of the components in Eqs. (4-5) is de-
scribed in the following. Different from the con-
ventional airship'*, there is no propulsion in
Eqgs. (4-5) since the airship here is driven by the
buoyancy.

(1)Linear velocity v and angular velocity (2

Let the linear velocity vector v=_v;,vs,v; |
and the angular velocity vector Q=[£,,0,,0:]",
all written with respect to the body frame O{e,,
e,-e3}. For the trajectory tracking purpose, v has
to be transformed to an inertial frame G {7, ;. %}
by a rotation matrix R, as

) = Ry

(2) Mass matrix M and moment of inertia
matrix J

The mass matrix incorporates all masses and
the inertial terms. The inertia of the airship is
much more significant due to its large volume/
mass ratio in comparison with conventional air-
planes. Therefore, the inertia has to be consid-
ered.

In case of a rigid body in an ideal fluid with
velocity v; in the direction 7, the force acting on
the rigid body by the fluid in the direction j is
—m;;v; and the parameter m;; is called the added
mass. There are 36 added masses for a rigid body

L8l However, only the added masses in

in motion
the diagonal are considered for simplicity in this
research, and M and J are given by

M =diag{m,,m,,m,} = diag{m, + m,,,

m, + my, s, + Mgy}
J =diag{J,,J,,J;} = diag{l, + m,,,

I, + mg;, 1. + mg )
where m, is the mass of the airship airframe. I;
are the moments of inertia of the airframe about
Oe; s Oe,, and Oe; respectively, my;, m,,, and my;
the virtual added masses for e,, e,, and e; respec-
tively, and m, s mss, and mg the virtual added in-
ertia about Oe;, Oe,, and Oe; respectively. The
method for estimating these virtual masses and
inertia was indicated in Refs. [19-20].

(3)Dynamic force Fy and moment M,

The force vector Fy contains the Coriolis
force and the centrifugal force of the dynamic
model, and M, contains the moment of the Corio-
lis force and the centrifugal force. Fy and M, are
given by

F, =M, X
My=JOXOQ+ M, Xv

(4) Aerodynamic force F, and moment M,

Different pneumatic pressures are distributed
on the surface of a vehicle flying in the atmo-
sphere. The effect of those pneumatic pressures
can be represented by aerodynamic force F, and
moment M, as follows

F, = (X,,Y,.Z)"

M, = (L,,M,,N)H"
where X,, Y., and Z, are drag, sideforce, and
lift, respectively. L., M,, and N, are roll mo-
ment, pitch moment, and yaw moment, respec-
tively. All of these terms are with respect to the
body frame. The explicit forms of F, and M, can
be found in Ref. [15].

(5)Force Fgp and moments Mcg of the gravi-
ty and buoyancy

The composition of the gravity and the buoy-
ancy with respect to the body frame is denoted by
Fep

Foo = (m, — m)gRT k = (m, — m)gR" k

It is assumed that the center of gravity of the
rigid body locates at point O. So there is no mo-
ment involved by m, and the buoyancy of the air-
ship. In the body frame, the latter moment is

Mgz =0
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(6)Internal force F; and moments M,

Since the moving masses are actuated by and
fixed to the airframe, there exists a reacting force
on the airframe which is a significant difference
from the conventional airship and airplane. These
interactions F; and M, are given by

Fi=—u
Mi=—r,Xu

Besides the dynamics of the airframe and the
moving mass, the mass of the air bladder is con-
trolled by another input u,, as

ny, = u, (6)
where m, is the mass of the air bladder.

The full 8-DOF mathematical model of the
buoyancy-driven airship is given by Eqgs. (3-6).
Comparing the modeling in Refs. [9,12], the ap-
proach presented here is more clear and simple. It
considers the rigid body and the moving mass as
two independent parts. Thus, it is possible to re-

fer the modeling of the conventional airship''***/

2 CONTROLLER FOR 3-D
MOTION

A control scheme based on the singular per-
turbation for the longitudinal and the lateral dy-
namics in 3-D space is presented (Fig. 6). Some
simulations are does one to show the control per-
formances for the attitude control and the guid-
ance.

Note that the turning direction, namely lat-
eral motion, of the autonomous underwater glider
is decided by the roll dynamics, ¢ and £2,, as de-
picted in Section 1.1. It does not depend on the
yaw dynamics, ¢ and 25, which are caused by the
deflections of the control surface, as it is the case
for most underwater and aerial vehicles. Thus,

the yaw dynamics, ¢ and 2;, can be neglected.
2.1 Controller structure

The two-time-scale decomposition of the sys-
tem model is based on the assumption that the dy-
namics of the states on the longitudinal plane are

slower than those states on lateral plane (Fig. 6).
Here, the longitudinal states consist of 8, £, v,

vss 7, .and 7, ,and the lateral states consist of ¢,

Uy
—_—
Airship model 6, 9,0
u v, 1, F,
States of
(“') u, Nonlinear lateral motion
fast controller
States of
longitudinal
U, Nonlinear motion

slow controller

Fig. 6 Structure of singular perturbation controller

0., vy,s vss rysand 7. The yaw states, ¢ and
0, are not involved in this decomposition. It is
shown a posteriori that this time scale decomposi-
tion will be the key for a successful 3-D control.

The design of the controller is separated into
two steps relating to the slow and the fast dynam-
ics.

Even though the full system is reduced into
two-time-scale subsystem to design controllers, it
is not easy to analyze these subsystem dynamics
due to complex nonlinear properties of the sys-
tem. For a similar mechanism system, PID,
LQR, and Lypunov approaches are used to design
the controller”'* for planar dynamics. Next, a

22l approach is

maximal feedback linearization
adopted to derive a control scheme for 3-D mo-

tion.
2.2 Slow dynamics controller

Design of the controller «; for slow dynamics
shown in Fig. 6 deals with all dynamics in the lon-

gitudinal plane. First, rewrite the longitudinal

model as

0 =20,

Q, =

}7 (M, + Tpls — 7‘/)31‘1)

v = %((E — my)gsind — myv, 2, +
1

F,—up
: B 7
Uy = ﬁ(* (m — m,)gcost + mv, £, +
Fas - uﬁ)
Fpo=—0 — \er/)s — (v; — ‘QZTN) 0, —

gsind + u,/ m

m, = u,
where u; is not a control input and is decided by

Eq. (3) since 7,3 =0 and #,; = 0, and the term
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(m,—m3)v, vy in right side of QZ is neglected since
it is included in the aerodynamic moment M,?*,

It is difficult to handle subsystem Eq. (7) di-
rectly. But a simplified model can provide a great
deal of insight into stability and control design.
As done in Ref. [13], the complex airship model
is simplified into a prismatic-joint pendulum. For
completeness, recall the main features.

It is clear that the dynamics in the longitudi-
nal plane is impacted by the following four parts:

(1) The moving mass p, which controls the
pitch angle ¢;

(2)The net lift m,g which controls the ascent
and the descend of the airship;

(3) The inertial force which is denoted by
added masses m;;

(4)The aerodynamic force F, and M.,.

Assume that the airship is fixed at point O
and is only subject to the motion of the moving
mass to control the pitch angle, and there is no
other force affecting the airship. In this situation,
the system can be maximally simplified, and the
airship rotates around the center of the volume O,
which yields the system to be a prismatic-joint
pendulum described in Fig. 7. The rotational joint
at the point O is not actuated. The joint between
the two links of the pendulum is prismatic and ac-
tuated. This pendulum, inverted or not, has been
considered as a standard control example in many
references",

The mathematical model for this special case
is easy to derive, and it is a subsystem of
Eq. (7). An analysis of maximal feedback lin-

earization is done. It is found that there exists an

out-put function involving the angular momentum
Link 1

Link 2

Fig. 7 Simplified airship system identical to prismatic-

joint pendulum

of the system around O, which has relative degree
3 and which yields an asymptotically stable zero
dynamics.

It is shown that the angular momentum of
the system has its relative degree unchanged when
more force act on the airship. The angular mo-

mentum [, for model Eq. (7) is
1, = J,0+

Eﬂ’ll ’)ﬂs(ml“*%)ﬂ

2 2 P -
— — 12, 0+ 2, 0+ r .7

r1 3 £37 p1
m + m\m, (my + m) " "

Up to some integrating function p, the angu-
lar momentum II, can be integrated. More pre-

cisely, there exists II,

II, = pll, >0

r

I, =0+ 23 .
my(m, +m)\/ %ml
e J, 4 2
\/ml(m3+m) m ~+ m, 2 7

ma(m, -+ m)

— r/;l
my Gmy + m)

arctan

mm,
m -+ m,

Any combination of II, and II, has relative

']2 + T’is

degree 3 and its feedback linearization will yield a
linear controllable 3-D subsystem with a 3-D zero
dynamics™. The following result shows the pos-
sibility to ensure that the system is the minimum
phase which has a decisive impact on its internal
stability and the doability of this control design.

Theorem"'® y=1II, + ¢ II, has stable zero
dynamics for ¢>> 0.

For ¢>>0, the system is asymptotically stable
as p is strictly positive and bounded.

From this Theorem, it is mandatory to pick
¢>>0 to ensure internal stability of the closed loop
system. Its actual value is a tuning parameter
which influences the velocity of the zero dynam-
ics. The following error equation is considered

VA AP+ Ay Ay —y) =0 (8
where y*is an explicit function of the control in-
put u«,. Thus, Eq. (8) is solved in «, and «, is em-
bodied static as the state feedback which is com-

puted explicitly after some lengthy but straight

forward computations.
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2.3 Fast dynamics controller

Design of the controller u, corresponding to
the fast dynamics in Fig. 6 deals with the states in
the lateral plane. The mathematical model for the
fast dynamics is derived by letting longitudinal
states equal zero
¢ =10

Q] = L(La — Tpotly T ystty)
J,
U, = n%((mo — m)gsing + myv, 2, +
F., — uy)
(9

vy = mig((mo — m)gcose + myv, 2, +
F;ns - ug,)

7';/:2 =—7, + 017’/’3 + (v; + 017’/:2) 'Qz +
gsing -+ u,/ m

m, = u,
where u; is also decided by Eq. (3).

For the fast dynamics controller design, note
that the analysis of the slow subsystem remains
instrumental. Actually, the lateral controller de-
sign is the same as in the longitudinal controller
design. This remark is easy to understand when
taking into account of the real physical system
(Figs. 2-3). The dynamics in the lateral phase
has the same structure as the dynamics in the ver-
tical phase,however the parameters are different.

Two moving masses located in two planes re-
spectively, which lead the dynamics in these two
planes are identical. The angular momentum for
the lateral plane is

. mms

HE =Jip+ mfiz P —
3
mm, . , -
pr— ", (Fpstpe — 735 @)

and there exist two functions &, and p
p >0

H, o= o &8
Sy = 0

T3

2 = P .
my,(my 4+ m) mm,

my(m, -+ m)

——7,,
m,(m, + m)

1y

arctan

%—’_sz 4
—J, )

mm,

E, and &, have relative degree 3. By the
same way, it is easy to prove that y =5,+¢' &,
has stable zero dynamics for any ¢’ >>0. An error
equation as Eq. (8)

y'(li) + Azly’(z) + Al'y'(l) _|_ A()'(y' _ y“') — O

(10)
is adopted to design controller u, to stabilize the
flight path angle 7 and speed to commands in the
lateral plane. The parameters of the controller
are represented by A,, A;, and A,. The exact ex-
pression of wu, is easily computable, although
through tedious computations. Similar simulation
results as that for the longitudinal dynamics are

obtained for the dynamics in the lateral plane.

3 SIMULATIONS OF NOMINAL
CONTROL RESPONSES

Through the simulation in 3-D space, it is
found that if six poles of the error Egs. (8,10) are
all arranged at the same places, namely A = A,
then the controllers «, and u, are too large and ex-
ceed an acceptable domain. When the longitudinal
dynamics is slow and the lateral dynamics is fast,
the magnitudes of u; and u, are acceptable. This
also shows the necessity of a singular perturba-
tion approach. In this paper, the following values
are chosen: ¢g=¢' =50, 4,=3, A =3, A, =1, A,=
30, A4, =300, and A,=1 000.

The superposition of both actions of con-
trollers are applied to the nonlinear coupled full
model Egs. (3-5). All mechanical properties used
in the simulation are listed in Table 1.

Table 1 Physical properties of airship

Term Value Term Value
m/kg 30 Volume /m? 296
m,/kg 269 mi/kg 400
m;/kg 400 ms/kg 500
J./ (kg * m*) 9 000 Jy/ (kg + m?) 8 000
Js/ (kg « m*) 3 000 7p3/m 2

Two simulations are done to present the per-
formance of the control scheme in Section 2. The
first simulation presents a typical turning case in
3-D space. Finally, the second simulation pre-

sents a continuing flight which includes ascent



350 Transactions of Nanjing University of Aeronautics &. Astronautics

Vol. 28

and descent in 3-D space. The values used in these
simulations are collected in Table 2.

Table 2 Specified flight paths and commands

Term Path 1 Path 2 Term Path 1 Path 2
V./(mes H 10 10 mo/kg —6.2 —6.2

&/ 29.2  31.7 k 50 50

7./ () 0 —10 A 3 3

0./ (") 20 20 A 3 3

@/ () 0 15 Ao 1 1

7 pe/m —0.74 —0.74 A 30 30

7 poe/ M 0 0.53 A 300 300
v /(mes™) 9.9 9.7 Ao 1000 1000
vs/(m e s™ 1) 0 —2.1 |lvse/(mes™) —1.6 —1.5

(1) Turning case

The first simulation, as shown in Figs. 8-13,
presents a typical turning case for the airship,
which means that the airship firstly ascends in the
longitudinal plane, and then turns to — ; direc-
tion. Here it simulates a combined situation of the
first two simple cases.

The reference direction and speed of the tra-
jectory, the commands of the states, and the pa-
rameters of the second simulation are specified by
Path 1 and Path 2 in Table 2. As shown in Figs.
8-9, the motion of the airship is restricted on the
After

that, the airship is controlled to turn right to fol-

longitudinal plane in the the first 100 s.

low a flight path angle ¥=10°.

The simulation is to show the performance of
the controller in a typical turning case. Actually,
during this turning case, the system transfers
from a 2-D case"'*to a 3-D case.

From the actual values of &, 7, and V pre-
sented in Fig. 10, good tracking performance of
the controller are shown. Comparing the dynam-
ics of the longitudinal motion (consists of 7, r,,,
and u,) and the lateral motion (consists of @, r,,,
and u,) in Figs. 11-13, it is easy to {ind that the
interaction between these two planes is weak
since when the lateral states transfer from zero to
the commands, the longitudinal states keep sta-
ble.

(2)Continuing flight in 3-D space

Fig. 14 shows a flight which consists of as

cent and descent in 3 - D space . The goal of this

5000 E
4000t

B 3000

~
2000
1000}

-1500

0 1000 2000 30004 000 50006 00070008000 900C
i/m

Fig.9 According trajectories in 2-D space

S/I)

2@

200 400 600 800 1000

102
w
é 10.0
T 08 : _ : _
OO i i i i
0 200 400 600 800 1 000

Fig. 10 Actual values of flight path angles &, 7 and

speed V
15
10
S s
o : : : :
0 200 400 600 800 1000
20.5 : : : :

200 400 600 800 1000
t/s

Fig. 11 Dynamics of attitude ¢ and ¢
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Fig. 12 Motions of moving masses
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Fig. 13 Dynamics of control
800
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<
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0
0
3000
/7y ~1000 — 2000
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Fig. 14  Trajectory for continuing turning flight in

inertial frame G{i, j, &}

simulation is to shown this controller can continu-
ally cover the transition points and keep stable to

track reference trajectories in 3-D space.

4 CONCLUSIONS

The buoyancy-driven airship which employs
internal moving mass to control the attitude and
adjustable internal air bladder to control the alti-
tude offers a novel mechanism for UAVs. This

driving mechanism is more complicated than con-

ventional airships due to the existence of the in-
ternal dynamics and special buoyancy propeller.
This paper views the internal moving masses and
the rigid body as two independent parts, which
simplified the modeling and makes it more clear.
To present, the discussion on the control of
this mechanical system is mainly limited to one
plane (i. e., the longitudinal plane) and linear
Through a

scheme, a nonlinear feedback control scheme for

controllers. singular perturbation
the 3-D attitude control problem and the guidance
problem are derived for the first time. With the
controller proposed here, not only the longitudi-
nal dynamics can be stabilized, but also steady
turning direction can be achieved by the feedback
w,. The control performance of this control ap-
proach for dynamics in 3-D space is acceptable.
The result of this paper is useful for similar me-
chanical systems, such as underwater gliders and
re-entry vehicles.

Obviously, severe wind conditions are not
considered here, and they may give the limits of
the airship design and the minimal use of standard
propulsion may become mandatory and requires

further investigations.
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