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GRIDLESS METHOD FOR UNSTEADY VISCOUS FLOWS
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Abstract: Gridless method is developed for unsteady viscous flows involving moving boundaries. The point distri-
bution of gridless method is implemented in an isotropic or anisotropic way according to the features of viscous
flows. In the area far away from the body, the traditional cloud of isotropic points is used, while in the adjacent
area, the cloud of anisotropic points is distributed. In this way. the point spacing normal to the wall can be small
enough for simulating the boundary layer, and meanwhile, the total number of points in the computational do-
main can be controlled due to large spacing in other tangential direction through the anisotropic way. A fast mov-
ing technique of clouds of points at each time-step is presented based on the attenuation law of disturbed motion
for unsteady flows involving moving boundaries. In the mentioned cloud of points, a uniform weighted least-
square curve fit method is utilized to discretize the spatial derivatives of the Navier-Stokes equations. The pro-
posed gridless method, coupled with a dual time-stepping method and the Spalart-Allmaras turbulence model, is
implemented for the Navier-Stokes equations. The computational results of unsteady viscous flows around a

NLR7301 airfoil with an oscillating flap and a pitching NACAO0012 airfoil are presented in a good agreement with

Vol. 29 No. 1

the available experimental data.
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INTRODUCTION

Gridless method using clouds of points with-
out requirement for a grid has become one of the
hottest research areas in computational fluid dy-
namics. This new kind of numerical method pro-
vides another choice to solve partial differential e-
quations besides mesh methods. It has also been
used for simulating steady flows over complex
boundariest ",

Unsteady flows, such as deployment of high
lift devices, deflection of control surfaces, and
flutter of the wing, are very common in aeronau-
tical area as well as steady flows. In recent years,
many researches have focused on gridless method
for unsteady flows simulation. Kirshman, et al*>
combined a Cartesian mesh and gridless boundary
conditions with application to flutter prediction.
Wang, et al"*'developed a gridless method for un-

steady inviscid flow simulation. Wang, et al'in-
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troduced a new dynamic cloud method based on
Delaunay graph mapping strategy. These previ-
ous studies were mainly concerned on unsteady
invicsid flows.

However, for many aeronautical applica-
tions, the unsteady flows should not be viewed as
invicsid because the computing results can not
agree with the experimental data. On the con-
trary, they are viscous. Based on this knowledge,
a novel gridless method is developed to solve un-
steady viscous flows with moving boundaries.
The present work includes three main aspects:
(1) How to generate the point distribution for
viscous flows simulation, (2) How to get the
point distribution at each time-step since the
boundary is moving, (3) How to discretize the
spatial derivatives and temporal derivatives of the
Navier-Stokes (NS) equations on the obtained

points. To answer the first question, a hybrid
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point distribution strategy is proposed by consid-
ering the features of viscous flows. A fast moving
technique of clouds of points at every time step is
presented based on the attenuation law of dis-
turbed motion aiming at the moving boundaries.
The spatial derivatives of flow quantities are eval-
uated at each point with a weighted least-square
curve fit method in its cloud of points. A 2-D un-
steady compressible NS code is developed by in-
corporating all the above ideas with the dual time-
stepping procedure. The code is validated by sim-
ulating the viscous flows passing a NLLR7301 air-
foil with an oscillating flap and a pitching
NACAO0012 airfoil. The numerical results are also

presented.

1 GOVERNING EQUATIONS

The governing equations of the study are the
compressible NS equations in Cartesian coordi-
nates. The equations are written in the non-di-
mensional form® as

W | OE | OF |[JE, | OFy)

a Tty Tl Ty

=0 (D

The NS equations are non-dimensionalized by

free stream density p.., {ree stream pressure p..,

reference length L.and viscosity p. (Re../( V7
Ma..)) where Re.. and Ma. represent the
Reynolds number and Mach number of free
stream. In Eq. (1), W is the vector of conserva-
tive variables, E and F the convective flux terms,
Ey and Fvy the viscous flux terms. The vector of
conservative variables and the convective flux
terms are given
W = Lo,pu,ov,pe]"

E = [pU,ouU + p,po0U,0HU + 2,p]" (2)

F = [pV.,ouV,o0V + p,pHV + yp]1"
where o, p, e are the density, pressure, and total
energy per unit mass, respectively, u and v the
Cartesian components of velocity vector, x,=dx/
dt and y,=dy/d¢ the moving velocity components
of the point, where dx, dy are the displacements
of the point during the interval of time d¢, U =
u—x,, V=v—y, For a perfect gas, the total en-

ergy per unit volume is

pe = 7L+ Lot + o) (3

where 7 is the ratio of specific heats of the fluid
and typically set as Y=1. 4 for air.
The viscous flux terms Eyvand Fy are given
Ey =1[0.7,.,7,.0,]"
F,=1[0,7,,7,,.0,]" 4

where the viscous stress are

T, = %(m + /1»1«)( g—;‘ — %J

T, = %(m + p) 2 % — %J

f =t = Gt | P+ (5)
O, = ur,, Jrvwaf)iyl(’]/)j‘L %%(%)
0, = ut,, + vr,, + ﬁ}/l( 11?7[1 ]/j,ll %( %)

where g is the laminar viscosity coefficient which
is computed with the Sutherland formula and
v the turbulence viscosity coefficient which is
obtained from the Spalart-Allmaras turbulence
model®™. The Euler equations are obtained by

setting the viscous fluxes equal to zero.

2 POINT DISTRIBUTION AND
MOVING TECHNIQUE FOR
CLOUD OF POINTS

In gridless method, the spatial derivatives of
the governing equations are discretized in the
cloud of points. Since viscous flows are simulat-
ed, the point distribution is implemented in an
isotropic or anisotropic way according to the fea-
tures of viscous flows. In the area far away from
the body, the traditional cloud of isotropic
points”?*! (Fig. 1(a)) is used, while in the adja-
cent area, the cloud of anisotropic points
(Fig. 1(b)) is distributed. In this way, the point
spacing normal to the wall is small enough for
simulating the boundary layer while the total
number of points in the computational domain is
controlled due to the large spacing in other tan-
gential direction through the anisotropic way.

Fig. 2 shows the point distribution around a
NACAO0012 airfoil obtained in the above way.
This point distribution follows specific steps as:
First, the airfoil and its wake region are wrapped
in an envelope of points using the advancing-lay-

0]

ers method""" and the four neighboring points of
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(b) Cloud of anisotropic points

Fig. 1 Cloud C (@) for point ¢

(b) Close-up view at trailing edge
Fig. 2 Point distribution around NACA0012 airfoil

each point obtained in this step are defined ac-
cording to the layer structure (Fig. 1(b)). Sec-
ond, the remaining part of the flow field is filled
with points by delaunay triangulation"'’! and the
neighboring points of each point obtained in this
step are also defined (Fig. 1(a)). It is obvious
that when the advancing-layers method is imple-
mented, the spacing normal to the wall can be
easily controlled. In Fig. 2, the first point spacing
normal to the wall is specified at 5X 10 °.

In unsteady flow computation, that clouds of

points can move with the body boundaries is re-

quired to simulate the relative movement of body
boundaries. Hence, a fast moving technique of
clouds of points is used. The technique first pro-
posed by Lul'*for the dynamic structured grids is
based on the attenuation law of disturbed motion.
Here the technique is developed for the dynamic
cloud of points by some modifications. The de-
tails of the technique are described as follows by
taking the incompressible potential flow round a
cylinder for example.

The stream function is

QZJ:V%‘?‘*g sinf (6)

where a is the radius of the cylinder, V.. the ve-
locity of free stream. Magnify the cylinder’s ra-
dius to a-e€, then the previous streamline passing
point (r,8) yields a normal displacement Ar

(r — a)?

Nr=¢€—¢€¢ "'
r? + a?

P,

It is difficult to generate dynamic grids using

Eq. (7) directly. By further simplification, the

coordinates (represented by subscript ¢) of the
dynamic grids are

x,=x,—(x, —x)-g (8

where subscript » is the instantaneous coordinate

which the static grids move to with bodies, s the

boundary-fitted static grids used as initial values.,

g the function for the serial number of the grid

line

g = max _IA."\JZ,(]'—].I")Z\J (9

Ly — 1y Ji — Jv

where 7, j are the serial numbers of each point.
"b" is the corresponding boundary points and " {"
the far field points. In the method, the new coor-
dinates of each grid point are obtained directly by
Eq. (8) without iteration. It is an efficient way
for grid point moving. In fact, the method was
successful in generating dynamic structured grids
for the control surface moving and the wing flut-

5], There is no serial number of each point in

ter
gridless method as that in structured grid, so
Eq. (9) can not work in gridless method. There-

fore, g is changed into

i J (10)

g:(cwdf
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where d is the distance between point i/ and the
surface of the body, d; the distance between point
{ and the far-field boundary. When the body
moves, the new coordinates of each gridless point
are also obtained directly by Eq. (8), and for each
point, the topology of its clouds is not changed.
Fig. 3 shows the point distribution when the air-
foil rotates 30° about 25% of the chord on the ba-
sis of Fig. 2. The moving scale of the surface is
very large but the point distribution mainly keeps
the same quality as that of the initial point distri-
bution adjacent to the wall, which profits the

simulation of the boundary layer.

(a) Global view

(b) Close-up view at trailing edge

Fig. 3 Point distribution around NACA0012 airfoil

after rotating

3  NUMERICAL DISCRETIZA-
TION OF GOVERNING
EQUATIONS

3.1 Spatial discretization

For gridless method, the spatial derivatives
of any quantities are evaluated through linear
combinations of certain coefficients and the quan-
tity of the cloud of points. For example, in the

cloud of points C (i) (Fig. 1), the first spatial

derivatives of function f at point / are evaluated

with the following linear combination forms'?’

of m ‘
e . = kz;a/k.f/k

af B m )
@ ,_* ;ﬂiklez

where m is the number of neighboring points of

an

point 7 in the cloud of C(;), and f} the value at
the midpoint between points 7 and 4. The coeffi-
cients a; and [, are obtained with a weighted

least-squares curve fit to the following linear

equationt*

S =a+ bx+ cy 12)

The weight functions used in this study are

2

/ 7,

\ Tk

a

Wip =

where 7, 1s the relative distances defined as

Ty = \/(xk — )"+ (e — y)° (14)
where 7, is set as the distance between the central
point to the nearest point in its cloud of points.

Eq. (11) is applied to the convective flux of

the NS equations to obtain the following expres-

sion
E)E E)F o ”71 B m‘
ax dy B %{ (i + Puku) = %Gik (15)

The numerical flux G, at the midpoint be-
tween points i/ and % is obtained using Roe's ap-
proximate Riemann solver?,

The viscous terms of the NS equations are
evaluated at each point

el | = 5

J du du
axr al | ax

i dr

+

i ax

8(&1)

dx | |
16
where the first spatial derivatives is obtained by
Eq. (11) directly, while the second derivative is
obtained by
%(%J = N, %)M an

! k=1

The first derivative at the midpoint between

points i and % is obtained as™"

[ Ju | Ax

(£ /k—m(uk*%)ﬁ—
1 Ay [ du du o du du ‘
2 Asz(Ay(ﬂx i dr kJ Ax[‘ dyli  dy k))

1®

where Ax, Ay, and As® are given as
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(2]

Ay =y — i
As? = Ax? 4 Ay? (19

After the spatial discretization, the semi-dis-

Axr = x, — x;

cretization form of the NS equations on point 7 is

w

3.2 Temporal discretization

Second-order backward difference method is
implemented to the temporal derivatives of
Eq. (20) as

Wit — AWr + Wi
20t
where At is the global physical time step. A time-

+ R W) =0 2D

stepping methodology™* is used to solve Eq. (21)
to form the derivative term of conserved variables

with respect to pseudo-time 7

(7W:-,+] 3sz+l . 4W:1 + W;zfl - B
pw + oAl + R, (W;™') =0
(22)
The unsteady residual is defined as
3W)_z+l . 4Wn + anl
> Tty = d ! ! (Wit
R (W) OAL + R.(W;™H)
(23)
Eq. (22) is reformed as
(W:_Hrl . i -
pw + R (W) =0 24)

Then, the four-stage Runge-Kutta algorithm
is used to solve Eq. (24) with the local time-step-
ping and residual averaging for accelerating''®.
For the viscous flows, no-slip boundary condition
is imposed on the wall. In the far field, one di-
mensional characteristic analysis based on Rie-
mann invariants is used to determine the values of

the flow variables on the outside of the bound-

aries in the computational domain.

4 NUMERICAL RESULTS

In this section, the accuracy of the presented
spatial discretization is firstly evaluated by the
steady flow calculation on subsonic and transonic
viscous flows around a NACA0012 airfoil. Then
the unsteady flows around a NLLR7301 airfoil with
an oscillating {lap and a pitching NACA0012 air-

foil are simulated respectively.

4.1 Steady viscous flow around NACA0012
airfoil

Viscous flows over a NACAO0012 airfoil were
experimentally studied by Thibert et al™’. To
validate the present gridless method two test cas-
es with different conditions are conducted: one is
obtained at a free stream with Mach number of
0.5, an attack angle of 3.51°, and the Reynolds
number of 2.93 X 10° (Fig. 4 (a)), the other is
obtained at a free stream with Mach number of
0.754, an attack angle of 3.02°, and the
Reynolds number of 3.76 X10° (Fig. 4(b)). The
obtained pressure distributions on the airfoil sur-
face are compared with the experimental data
(Fig. 4), which indicates a good agreement be-
tween the numerical results of the proposed grid-
less solver and the experimental data. And from
the view of these two cases, the accuracy of the

present spatial discretization method is satisfacto-

ry.
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Fig. 4 Surface pressure comparisons

4.2 Unsteady viscous flow around NLR7301 air-

foil with oscillation flap

The test of the unsteady viscous flow around
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a NLR7301 airfoil is conducted. The part of air-
foil surface before 75% of the chord stands still
while the other part has an oscillation flap. The
axis of the flap is located at 75% of the chord,
the angle is set as ¢(z) =0.03°+ 0. 97°sin (wt) ,
and the reduced frequency is A=wc/2U..=0. 071,
where ¢ represents the chord length and U.. the
free stream velocity. The free stream Mach num-
ber is 0. 701, the attack angle of the airfoil is 3°,
and the Reynolds number is 2. 14 X 10°. To ob-
serve the influence of viscous effect, the NS equa-
tions and the Euler equations are solved by using
the initial point distribution with the point spac-
ing normal to the airfoil of 5X107° (Fig. 5) and
5X10?, respectively.

(a) Global view

(b) Close-up view at trailing edge

Fig. 5 Point distribution around NLR7301 airfoil

Fig. 6 shows the stream lines when the trail-
ing-edge flaps at the angle: 6(¢)=1.0° There is
a separate vortex at the upper surface of the trail-
ing-edge. Figs. (7-9) show the obtained distribu-
tion of different parts of the unsteady pressure co-
efficient. The pressure distributions obtained
from the Euler equations do not agree well with
the experimental datat’, while those obtained

from the NS equations concerning the viscous
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Fig. 6 Stream lines near trailing-edge

-2.5r
-2.0f

_______ Euler equations

0.5
NS equations
1.0F A Experiment
15 1 1 1 1 1
0.0 0.2 0.4 0.6 0.8 1.0
X

10

i
i
i
i
i
i
i
i
i

-25} L
-30fF - Euler equétions
NS equations
40 A Exp?riment ) ) .
0.0 0.2 0.4 0.6 0.8 1.0
x

Fig. 8 Distribution of real part of p
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effect are much more close to the experimental
data. Therefore, the NS equations are more suit-
able to solve this case. In addition, if laminar NS
is applied, the solver can not even converge at ev-
ery time step because the Reynolds number is as
large as 2. 14X 10°% Thus the effect of turbulence

should be taken into account.
4.3 Dynamic stall on pitching NACA(0012 airfoil

In this case, a NACAO0012 airfoil is pitching
at 25% of the chord with the attack angle: a(z) =
6. 25°+ 8. 5%in (wt), and the reduced frequency
k=wc/2U..=0. 075 where ¢ represents the chord
length and U.. the free stream velocity. The free
stream Mach number is 0.4, and the Reynolds
number is 3. 4X10°.

Numerical results are obtained by solving the
NS equations and the initial point distribution is
shown in Fig. 2. Fig. 10 presents the stream lines
when the instantaneous attack angles are 14.75°
(maximum angle) and —2. 25°(minimum angle).
In Fig. 10, when the instantaneous attack angle is

1.0r
05—

~ 0.0

-0.5
-1.0L 1 L 1 '
-0.5 0.0 0.5 1.0 1.5
x
(a) a()=14.75° (maximum)
1.01

~1.0L . )
-0.5 0.0 0.5 1.0 1.5

x
(b) a (f)=-2.25° (minimum)

Fig. 10 Stream lines at different angles of attack

14.75°, there are three vortexes near the upper
surface, while the stream flows along the surface
smoothly when the instantaneous attack angle is
—2.5° In the whole cycle of the pitching, the
flow features has a large range of change.
Figs. (11-12) show the unsteady lift and moment
coefficients versus the instantaneous attack angle
respectively. Numerical prediction of the present
gridless method are compared with the experi-
mental data™ and the results in Ref. [16], which

achieves good agreement.
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Fig. 11  Lift coefficient versus angle of attack
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Fig. 12 Moment coefficient versus angle of attack

5 CONCLUSION

With concerning point distribution in an
isotropic or anisotropic way, gridless method is
successfully implemented for the NS equations.
The verified numerical results show that the mov-
ing technique of clouds of points based on the at-
tenuation law of disturbed motion can be easily
applied for two-dimensional unsteady viscous
flows involving moving boundaries. To simulate

the unsteady flows involving large-scale moving
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boundaries, some modifications including the re-
construction of the structure of some clouds are

required, and the relevant research is in progress.
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