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Abstract: A numerical simulation of the toroidal shock wave focusing in a co-axial cylindrical shock tube is inves-

tigated by using discontinuous Galerkin (DG) finite element method to solve the axisymmetric Euler equations.

For validating the numerical method, the shock-tube problem with exact solution is computed, and the computed

results agree well with the exact cases. Then, several cases with higher incident Mach numbers varying from 2. 0

to 5.0 are simulated. Simulation results show that complicated flow-field structures of toroidal shock wave

diffraction, reflection, and focusing in a co-axial cylindrical shock tube can be obtained at different incident Mach

numbers and the numerical solutions appear steep gradients near the focusing point, which illustrates the DG

method has higher accuracy and better resolution near the discontinuous point. Moreover, the focusing peak pres-

sure with different grid scales is compared.
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INTRODUCTION

Shock wave focusing has been an interesting
research area for several decades. A locally high
pressures and temperatures created by shock
wave focusing have been applied to various inter-
esting scientific, industrial, and medical purpos-
est'?, Experimental studies of such focusing pro-
cess at low incident Mach number have been ex-
several

tensively investigated in the past

decades %%,

which have provided valuable in-
sight into understanding the nature of such flows.
But it is usually complex,expensive and time con-
suming , especially for higher Mach number cases
which are more interesting in physics and impor-

tant in practice. As the advent of supercomputers
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and the sharply increasing of computational
speed, the direct numerical solution of governing
equations, which is less expensive, yet reliable,
and especially suitable to variable flow condi-
tions , makes even more attractive.

Sod"first numerically studied the focusing of
cylindrical shock wave with the one dimensional
model using combination of Glimm’s method and
operator splitting. The focusing of shock waves
for incident Mach numbers ranging from 1.1 to
2.0 was experimentally investigated by Izumi-™-
and compared with numerical results obtained us-
ing Piecewise Linear Method. Jiang et al®' nu-
merically estimated the peak pressures attainable
in toroidal shock wave focusing using dispersion

controlled dissipation (DCD) scheme. But these
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methods usually achieve high-order accuracy by
using a wide stencil, which may lose accuracy in a
fairly large region near shocks.

In this paper, a discontinuous Galerkin(DG)
finite element method with third-order accuracy is
used to simulate the toroidal shock wave focusing
in a co-axial cylindrical shock tube. The
method""'"'"' has several advantages including its
flexibility in handling an irregular solution do-
main, formally uniformly high-order accurate,
and the requirement of fewer adjacent grid points,
which extremely provides convenience for pro-

gramming and computing.

1 MATHEMATICAL MODEL

1.1 Governing equations

The governing equations are expressed by us-
ing axisymmetric Euler equations in the cylindri-
cal coordinate system as follows

U | IF

—+—+—_s

x I (-Tyy) c N (D

where
U= L[o,pou,pv,E]
F = [pu,ou®*+ p,puv,(E + pu]®
G = [pv,ouv,00" + p,(E + pv]"
S = (;WJ [l,zt,v,i(E + P)}T
y g

where ¢ is the time, p the density, « and v are the

0 e R

velocity components along the x, y axes respec-
tively, p is pressure, and E the total energy per

unit volume

E =

o’ 4 v*)
7 —1 - 2

where 7 is the ratio of specific heat.

2

1.2 Space discretization

First, Eq. (1) is discretized in space using
the DG method. For V ¢, the approximate solu-
tion U (X ,¢) is sought in the discontinuous finite

element space

V= "{v, € LD v, P cVE&K,WKeTl,

where I', is the finite partition of the domain 2
and V (K) the so-called local space, which is tak-
en as the collection of polynomials of degree 4.
Set £=2 in this paper.

In order to determine the approximate solu-

tion U, (X ,¢), we multiply Eq. (1) by v,€V,, and
integrate over K € I';, then replace the exact so-
lution U (X ,t) by approximation U,(X,t) €V, fi-

nally use Green formulation. We obtain

jK U, (X,0)v,(X)dQ + ZJf(U,,(X ) -

e€ K

n, xv, (X)dI" — JKf(U;,(X,t)) + Vo, (X)dQ =

JKS(U,,(X,t))v,,(X)dQ (3

where

X = (x,y)

fWUX,0)) = (FWUKX,)),6GWUX,0)))
and n,.x denotes the unit outward normal for the
edge e(e=KNK'#J).

Then the flux f(U,(X,t)) * n.xis replaced

by the numerical flux A% (X ,z), we obtain
J (iUh(X,t)‘v,,(X)dQ +
Kk o

>

e€ KV ¢

T, (X)dQ — JKS<U,,<X,z>>v,,<X>dQ (1)

hS (X )0, (X)dI — JKf<UA<X»t>> :

The numerical flux is defined as
hr.[\' (X’t) — hz'.K (U/’(Xinl(l\’) ,t) ’Uh (chl(K) ,t))
(5)
The value of Eq. (5) at the point (X.¢) depends
on the two values of the approximate solution at
(X ,t). One is the value obtained from the interior
of the element K, namely

U, (X™® ) = lim U,(y,t)

y=ax,yeK

and the other is the value obtained from the exte-

rior of the element K, namely

7, (X, 1) X € a0
ext(K)
U, (X t)_l lim U,(y,t) X & a0
yoa,y& K

The numerical flux  satisfies consistent,
monotony, Lipschitz and conservative.

In this paper, the following Local Lax-
Friedrichs flux is used

hX(a,b) =

%[fm D) g — axb— )]

(6)

where «, g is an estimate of the biggest eigenvalue

of the Jacobin %f(Uh(X,t)) e n, xfor (X,z) in a

neighbourhood of the edge e. Moreover. the inte-
grals in Eq. (4) are replaced by quadrature rules
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as follows

h" (X,0)v,(X)HdIN &~

M”k—ﬁ

wh{[\(Xd?t)Uh(Xd)‘e‘ (7

jkf(Uh(Xat)) e Vu,(X)dR ~

M
Zwmf(Uh(XKw9t)) * vvh(XKm) ‘K| (8>

m=1

J SW,(X,t))v,(X)d2 ~
«

M
D0, SW, (X110, (X, | K | (9

m=1

Therefore, Eq. (4) is rewritten as

f U (X Do, (X)d +
x o

L
Zw,th(Xdat)vh(Xd) |"‘ -

e€IK =1
M

Z wmf(Uh (XKm ’t) ) *

m=1

Vv, (Xk,) |K| -

M

M w,SW, Xk, )0, (X, | K| (10)

m=1
For convenient computation, the orthogonal
basis functions {¢,@.*.¢} are used inside the
rectangular element [ xii,s 2it12 ] X [yj—12s
yj+12]). Hence, the local mass matrix is diagonal.
Then, the expression for the approximate solu-

tion U, (X ,t) inside the unit K is taken as

U,(X.t) = DU, (D¢ (X) (1D
Set Up—

dU,
>, ’JKgo,(X)@(X)dQ +

$;in Eq. (10), we obtain

de¢

L M
Ew/th(Xz»/al)% le| — Zwmf(Uh(XKm9t)) .

=1 m=1

7‘

e€ IK

M
= > w,SWU,Xg . tNe K| (12)

m=1

Make My be the mass matrix, for Y v, €V,
VY K&y, Eq. (12) can be rewritten in a concise
ODEs form as

Vel K|

dU, ()
d¢

My =L, U, 7)) (13)

1.3 Runge-Kutta time discretization

The above system of ODEs is discretized in
time with Runge-Kutta method that is third-order
accurate and the special steps are shown as fol-
lows.

(1) Set 172:[’\;,'(00) » the operator Py is the

L,-projection into the finite element space V.
(2) For n=0,+-,N—
lows :
(1) Set U=
@) For i=1,"

diate functions

1, compute U; "' as fol-

,k+1, compute the interme-

i—1

U= { > a U 48,00 L (U Y, (i) |

=0
Apt = gl
®) Set Uyt =Ui"!
For more details on the value of «;, (8; and

d,s see Ref. [127].

2 NUMERICAL SIMULATIONS

A numerical simulation of the toroidal shock
wave focusing in a co-axial cylindrical shock tube
is investigated in this paper by using a DG f{inite
element method with third-order accuracy. To

the shock-tube

problem with initial state in Ref. [16] is comput-

validate the numerical method,

ed. The comparisons between the computed re-
sults and analytical solution show excellent agree-

ments as shown in Fig. 1.

1.0 TR o  Computed result
Analytical solution
0.8
& 0.6
QU
041
02F
00 1 1 1 1
0.0 0.2 0.4 0.6 0.8 1.0
x
(a) Density

1.0 (TR o Computed result
Analytical solution
0.8
Q¢ 0.6F
QU
04}
0.2
0.0 .
0.0 0.2 0.4 0.6 0.8 1.0
P
(b) Pressure

Fig. 1 Comparisons between computed result and ana-

lytical solution
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Several cases with higher incident Mach
numbers varying from 2.0 to 5.0 are computed.
A schematic of computational domain, which is
1. 0L in radial direction and 2. 0L in axial direc-
tion, shown in Fig. 2, is divided into 400 X 200
grid cells, where L : D : d=1:0.3: 0. 2.

Fig. 3 shows density contour distributions for
incident Mach number Ma= 3. 0 at different non-

dimensional time. The toroidal shock wave, wh -
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Fig. 3 Density contour distributions at different time (Ma=3. 0)
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cause of a sudden spread of propagating profile
and a vertex ring is formed behind the diffracting
shock wave as shown in Fig. 3(a). And then. the
diffraction shock wave implodes toward the axis
of symmetry and a regular reflection can be ob-
served in Fig. 3(b).

shock wave is developed because of the local su-

Meanwhile, a secondary

personic flow. After focusing, a regular reflection
begins to a transitional Mach reflection and a
Mach stem is formed, and then develops a spheri-
cal Mach reflection, which is called spherical dou-
ble Mach reflection, as shown in Fig. 3(c). This
results from impinging jet generated by shock
wave focusing. With the lapse of time, the spher-
ical Mach stem becomes much more convex and
there is very complex interaction among shock
waves, slip lines, and eddies behind the spherical
Mach stem, as shown in Figs. 3(d-f).

Density contour distributions, for incident

Mach numbers varying from 2.0 to 5.0 at differ-
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(c) Ma=4.0, t=04

ent non-dimensional time, are shown in Fig. 4.
From Fig. 4, it is observed that there are obvious
differences in the wave structure. For the case of
incident Ma = 2.0 as shown in Fig. 4 (a), the
shock wave reflection with curved Mach stem de-
velops, whose curvature is close to zero and ap-
pears nearly planar. Furthermore, some other
major flow characters including slip slides and
triple point can be captured by computation. With
the increase of incident Mach numbers as shown
in Figs.4(b-d), Mach stem is accelerated by
stronger impinging jet generated by shock wave
imploding and becomes much more convex, fur-
ther the spherical double Mach reflection is
formed. Moreover, vortex ring behind the spheri-
cal Mach stem and two triple points can be ob-
served obviously. It is concluded that the incident
Mach number of toroidal shock wave plays a vital
role in the flow field structure development of

shock focusing.

1.0

0.5

~ 00
0.5
—_ -
1.0, 0.5 1.0 s
X

(b) Ma=3.0, t=05

(d) Ma=50, t=03

Fig. 4 Contour distributions with different incident Mach numbers at different time
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Fig. 5 shows the distributions of peak pres-
sure histories along the axis of symmetry for dif-
ferent incident Mach numbers, where pu./po is
the ratio of local peak pressure to ambient gas
static pressure. From Fig. 5 it can be observed
that the peak pressure varies significantly with
the increase of shock Mach number. For the cases
with Ma=2.0, 4.0, the peak pressure increases
up to nearly eight times when incident Mach num-
bers is increased two times. Fig. 6 shows centre-
line pressure distributions for different incident
Mach numbers at a certain time after shock wave
focusing, where p/p, is the ratio of local gas
pressure to ambient gas static pressure. From
Fig. 6 it can be observed that the numerical solu-
tions appeared steep gradients near the focusing
point, which indicates this method has higher ac-
curacy and resolution near the discontinuous
point. Moreover, with the increase of incident
Mach number, the peak pressure of shock wave

focusing becomes higher.

200

Fig. 5 Peak pressure histories along symmetry axis

200}
150_ —Ma=5.0
<
~
_Q L
100F I 27a=40
50
—Ma=3.0
0

0.5 1.0 1.5 2.0
x

Fig. 6 Pressure distributions of centreline

Fig. 7 shows distributions of peak pressure
histories along the axis of symmetry at different
grid scales for incident Mach number of Ma =
3. 0. From Fig. 7 it can be observed that the peak
pressure nearby the shock focusing point appar-
ently increases with the grid size decreasing. For
the case of Ar=Ay=1/150 and Ax=Ay=1/300,
the peak pressure increases to nearly 1.5 times
when grid size is decreased 2. 0 times, which indi-
cates that the computed peak pressure may be less
than that of the actual focused pressure.

70

Ax= Ay=1/300
Ax= Ay=1/250
Ax=Ay=1/200

60

50

i 40 Ax=Ay=1/150
~
)

20

10

Fig. 7 Distributions of peak pressure histories along

symmetry axis at different grid sizes

3 CONCLUSION

A computational study is investigated for the
toroidal shock wave focusing in a co-axial cylin-
drical shock tube using third-order accuracy DG
method. Qualitative features of the flow field in-
cluding the secondary shock wave, vortex ring,
triple point, slide line, and spherical double Mach
reflection during the process of shock focusing are
easily observed in the computed results. And the
numerical solutions appear steep gradients near
the discontinuous point, which indicates that the
method is robust for solving toroidal shock wave

focusing problem.
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