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Abstract: A thrust estimator with high precision and excellent real-time performance is needed to mitigate perfor-

mance deterioration for future aero-engines. A weight least squares support vector regression is proposed using a

novel weighting strategy. Then a thrust estimator based on the proposed regression is designed for the perfor-

mance deterioration. Compared with the existing weighting strategy. the novel one not only satisfies the require-

ment of precision but also enhances the real-time performance. Finally, numerical experiments demonstrate the

effectiveness and feasibility of the proposed weighted least squares support vector regression for thrust estimator.
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INTRODUCTION

In the past few years, National Aeronautics
and Space Administration (NASA ) has made
great efforts to develop advanced aero-engine con-
trol concepts, which has been confirmed in many

U1 Among these advanced concepts, in-

articles
telligent engine control (IEC) has drawn much at-
tention since it was proposed by Adibhatla et
al®l. Up to now, IEC has involved many contents
including model-based control™, life extending
control"™, performance deterioration mitigating

( PDMCH" PDMC

promise to accommodate future aero-engines with

control shows great
many advantages including: (1) PDMC can re-
duce the control dependency on human and realize
autonomous operation of the propulsion system
by keeping the relationship between power lever
angle (PLA) and engine thrust stand still while

engine performance deteriorating due to wear.

Document code : A

Article ID:1005-1120(2012)01-0025-08

(2) Compared with traditional control methodolo-
gy, PDMC can achieve the direct control of en-
gine thrust and the unmeasured variable of inter-
est, resulting in less conservative designs which
can lengthen engine life and improve operating ef-
ficiency. (3) If all the engines on a multi-engine
aircraft do not have the same throttle-to-thrust
relationship, a thrust imbalance will occur, caus-
ing unwanted yaw which requires pilot interven-
tion. PDMC can avoid this.

PDMC consists of two parts; the inner loop
control, namely the traditional control methodol-
ogy for aero-engines, and an additional part, the
outer loop control (Fig. 1). Because of outer loop
control, PDMC always keeps the same throttle-
to-thrust relationship without considering the en-
gine performance deterioration. Meanwhile, it
can avoid unwanted yaw caused by thrust imbal-
ance. To implement PDMC, more emphases are

put on outer loop control because the inner loop
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Fig. 1 PDMC architecture

control involves the standard engine controller
like a full authority digital engine controller
(FADEC). Obviously, the outer loop control is
comprised of three components: nominal engine
model, proportional-integral (PI) controller with
integrator windup protection (IWP), and thrust
estimator. Nominal engine model only plays a
role in PLA for thrust mapping to obtain the ex-
pected thrust as a reference signal. PI controller
produces the incremental value of PLA (APLA)
via the thrust error to modify the input of PLA
command implicitly. The third component,
thrust estimator, is used to estimate the current
thrust of engine in time. Unlike PI controller, the
design of thrust estimator seems more difficult.
By now, thrust estimator can be realized in two
ways. One is the implementation using the con-
ventional numerical methods, i. e. Kalman fil-
ter!'". Since machine learning theory emerged,
thrust estimators based on it like neural networks
and support vector machine (SVM) have attract-
ed great attention recently''?', But the study is
still on the inchoate stage. Most of the machine-
learning-based thrust estimators only focused on
thrust estimation without concerning performance
deterioration. In this study, research on thrust
estimator of performance deterioration on the ba-
sis of machine learning theory, least squares sup-
port vector regression (LSSVR), is conducted to
meet the need of PDMC.

SVM! %) has prevailed in many fields since
it was proposed. Unlike artificial neural network
(ANN) which easily fits in local solution, SVM
owns a unique global optimization solution with

unacceptable training cost for large scale prob-

lems, because the training complexity rises geo-
metrically with the increase of the size of training
samples. To lessen the training burden, LSSVR
was proposed by Suykens, et al™™ to cope with
quadratic programming problem in SVM by a lin-
ear equation as a surrogate. However, the lack of

1 was brought out

sparseness and robustness!®
while using the equality constraints instead of in-
equality ones and replacing the e-insensitive loss
function by the squared loss function. To over-
come those disadvantages, the pruning strate-
gy was proposed by reducing the number of
support vectors to shorten the prediction time and
enhance the real-time performance. Meantime,
the weighting strategy was proposed to enhance
the robustness of LSSVRM"®), but it did not satisfy
all the settings. For example, the weighting
strategy in thrust estimator reduced the estima-
tion effectiveness because of its unsuitability.
That is to say, the weighting strategy should be
adopted appropriately according to the actual set-
tings. Therefore a novel weighting strategy is
proposed to improve the robustness of LSSVR
while reserving good performance of thrust esti-
mation on the basis of exhaustive analysis of the
mentioned references. Finally, the experiments
on a nonlinear component level model of dual-
spool turbofan engine with mixing exhaust vali-

date the effectiveness and feasibility of the pro-

posed weighting strategy.

1 WEIGHTED LEAST SQUARES
SUPPORT VECTOR REGRES-
SION

Before the introduction of weighted least
squares support vector regression (WLSSVR),
the normal LSSVR is firstly described. A training
data set {(x;,d,) ", with a size N is given in the
normal LSSVR, where z; is the input variable and
d; the output variable with the value predicted
from the value of z,. The normal LSSVR is to
find the normal vector w and the bias 4 so that for
each sample (x;,d;), the affine function f(z,) =

w'z; 4 b yields a small deviation between the ob-
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served valve d;and the predicted value f (x;)
The parameters can be obtained by solving the
following optimization problem that the model
complexity pluses the squared training errors with

equality constraints

mm{ —wlw + — Z }

di=w'o(x;) + b+ e
i = 19"'9N
’ e;\"]’r7§0( M

mapping which can transform the input data x; in

(D

where e=[e,, ey, = ) is a nonlinear
the input space into ¢(x;) in the feature space,
C>>0 the regularization parameter which can con-
trol the tradeoff between the flatness of the model
and closeness to the training data. Because some
samples contributs more than others while obtain-
, N) is

introduced to form the optimization problem

ing f(x2), a weighting factor v;(/=1, -+

min{J(w,e) = —w w4+ — Zve } (2)

dz :WT@(I;) +b+€, 1= 19"'9N
Lagrangian function is constructed to solve
Eq. (2) as

Lw,b,e;a) = J(w,e) —

N
Za,(wT o(x) + b+ e —d) (3)

i—1
where a=[a,,+*,ay|" is the Lagrangian multipli-
er vector. According to the Karush-Kuhn-Tucker
(KKT) condition of Fq (2), we have
%:O*’W* La o(ax;)

i=1

N
L) e =0

b
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After eliminating w and e,, the following e-

quation set is obtained
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+ ) the kernel function.

is a kernel matrix with the elements K
x;)=¢@(x)" go(xj),VZdiag{ } the

diagonal matrix, £(C -+ ,

Among many kernel functions the Gaussian ker-
nel function £(x;,2;) =exp(— || zi—x; || 2/27%) is
commonly used with a tuning parameter 7. After
solving Eq. (5), the prediction function of
WLSSVR is obtained
N
f@) =wa4 b= Dlak(z,z)+b (6

i=1

18] gave a scheme

Therefore, Suykens, et al
of robust estimates to determine the weighting

factor v;(G=1, **-, N) by formulating

&
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where s is a robust estimate of the standard devi-
ation of the normal LSSVR error variables e;

- _ IQR
T 2%0.6745

where IQR is the inter-quartile range.the differ-

(&

ence between the 75th percentile and 25th per-
centile. During the estimation of s, how much
the estimated error distribution deviates from a
Gaussian distribution is taken into account. The
constants ¢, and ¢, are typically chosen as ¢, =
2.5 and ¢;=3. From the experimental results giv-
en by Suykens et al, this weighting scheme can
improve the robustness of normal LSSVR due to
the involvement of squared errors loss function.
In addition, the weighting factor v;is estimated
When the training

from a statistical viewpoint.

sample z, induces a large training error, i.e. its

corresponding ¢,<C | ¢;/s | , the weighting factor is
endowed with a very small number as 107", In
other words, the contribution made by sample
z; to the final target function is negligible. How-
ever, in some situations where more emphases are
required to put on the training samples inducing
large training errors, the weighted strategy pro-
posed by Suykens, et al is inappropriate obviously
because the modeling effectiveness may be not im-
proved and even become worse. It is necessary to
propose an appropriate weighting strategy to

adapt the design of thrust estimator. In this situ-
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ation, a new weighting strategy is proposed as

e

L

d
i

v; = 10 i=1, -, N (9
According to Eq. (9). the larger relative
training error the training sample induces, the
more weighting factors are given. The presented
weighting strategy is more suitable for the design
of thrust estimator than Suykens, et al’s because
more emphases are put on the training samples
producing larger relative training errors. The ex-
perimental results in section 2 will support it.

It is not enough to design thrust estimator
using WLSSVR, since according to Eq. (6) every
training sample is a support vector, which limits
the real-time performance. The prediction time is
in direct proportion to the number of support vec-
tors. Suykens, et al proposed a pruning method
as imposing sparseness to prun support values
from the sorted support value spectrum. The
complete reduction strategy is executed by using
this method because if a training sample is
pruned, it is completely discarded to retrain
WLSSVR. According to Eq. (2),every training
sample is a support vector in WLSSVR. Those
so-called non-support vectors are imposed and ev-
ery training sample makes its own contribution to
WLSSVR. However, if every training sample is
retained as support vector, the real-time perfor-
mance of WLSSVR will be limited. As a tradeoff,
during implementing the pruning method, the

021 is employed to reduce the

partial reduction
number of support vectors and enhance the real-
time performance while considering the effects of
the pruned samples on the final

WLSSVR. Eq. (5) is unfolded as

training

_0 1 eee . 1 ' eee 1 —
1 o _
1 k“+V1_C e kli klN b 0
: Lo a | |d
1 k, k,+ L k, el
il il v,.C iN di
1 |t ay| [ dy]
R T ko arwel
(10)

If x,is chosen as non-support vector and

pruned, only its corresponding column (the
dashed box in Eq. (10) is removed without delet-
ing the corresponding row. Hence, an over-deter-
mined linear equation set is obtained as

Ka=d (1D
where K is equal to the matrix (K+V) without
the column corresponding to the sample x;,, a=
[hy ay, = s an 1Tad=1[0. d,, =,
dy 1. Generally, Eq. (11) is solved in the least

s Qg Qipps °°°

squares sense. It is well-known that the solution
to Eq. (11) satisfies the following normal equa-
tion
K'Ka=K'd a2

where K'K is the information matrix, whose con-
dition number is double that of K. If Eq. (12) is
solved directly, the obtained @ becomes bad due
to large rounding errors. Instead, QR decomposi-
tion with pivoting, a very stable algorithm, is
used to solve Eq. (11) in the least squares sense.
It is easy to realize with backslash operator in
Matlab. The proposed pruned WLSSVR is sum-
marized as follows.

Algorithm 1: the proposed pruned weighted
LSSVR (Z-WLSSVR)

Step 1: Initialize the kernel parameter 7, the
regularization parameter C, the weighting factor
v'=1G=1, =, N).

Step 2: Construct Eq. (5) with v and solve

Step 3: Calculate the predefined performance
index. If the performance index degrades, stop,
else sort the support values |¢a;|. And choose a
small amount of training samples with smallest
support values and remove their corresponding
columns from Eq. (10).

Step 4: Compute the weighting factors v*" of

the remaining training samples according to

Q;
Eq. (9) ’ Where e/zw.
Step 5: Set v% = ¢ o v, update the

weighting factors in Eq. (11) with v, solve it by

using the QR decomposition, and then go to Step
3.
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2 EXPERIMENTS

The proposed Z-WLSSVR with the advan-
tages of effectiveness and feasibility is applied to
design thrust estimator for PDMC. All the exper-
iments in the study are carried out by Matlab
2007a on a personal computer with Intel (R)
Core™i7 CPU 950 processor and Windows XP op-

component level model (CLM) of dual-spool tur-
bofan engine with mixing exhaust (Fig. 2). For
convenient comparison and measuring, a perfor-
mance index RD, relative deviation, is defined

as

d, — f(x)
RD = ——a

i

a3

where d; is the measured value, f(x;) the predict-

eration system. The research object is a nonlinear ed value.
B
2 T 6 8
0 44 16

Fan Compressor

i Mixer, afterburner, nozzle :

2L 5 '3/ 4/ S 6 ;

Combustor High-pressure turbine Low-pressure turbine

Fig. 2 Illustration of dual-spool turbofan engine with mixing exhaust

Z-WLSSVR is firstly used to design thrust
estimator for PDMC. Then Suykens, et al’s
pruned LSSVR (S-LSSVR) is also utilized to
demonstrate the irrationality of Suykens, et al’s
weighting strategy in this setting. For a fair com-
parison , all algorithms are initialized with the
same model parameters: the kernel parameter 7
and the regularization parameter C, determined
by cross validation technique with normal
LSSVR. In the experiments, the performance de-
terioration of four components including fan,
compressor, high-pressure turbine, and low-
pressure turbine is considered with the efficiency
degradation ranging from 0% —5%. The PLA
scales in the closed interval [ 25°, 110°]. When
PLA is set beyond 75°, the afterburner starts to
work. As for the input variables, according to
Ref. [13], seven measurements are selected in-
cluding the altitude (H), Mach number (Ma),
the total pressure of the outlet of bypass (Py),
the total temperature of section 8§ (7T'y), the tem-
perature ratio of aero-engine (ETR), the main
fuel flow (WFB), and afterburner fuel flow
(WFA). These input variables are normalized
within the range of [0, 1] before input into thrust

estimator because of their different measure-

ments. The experimental results on four flight
conditions using the proposed Z-WLSSVR are
drawn in Fig. 3. Duo to the space limitation, sim-
ulations with other algorithms, including normal
LSSVR"", S-LSSVRM™/, S-WLSSVR", and Z-
WLSSVR, are not mentioned here but the de-
tailed results are listed in Table 1.

According to Fig. 3, the maximum of the ab-
solute value of RD is not more than 3. 5%,, which
satisfies the requirement of PDMC. When normal
LSSVR is used to design thrust estimator, the
prediction time is the longest, usually more than
2 ms, which does not meet the requirement of de-
signing aero-engine controller. Hence, S-LSSVR
is employed to cut down the prediction time with
the enhancement of the real-time performance
through reducing the number of support vectors.
S-WLSSVR is also utilized to model thrust esti-
mator to further increase real-time performance.
Due to the inappropriate weighting strategy, the
real-time performance is not improved under the
last three flight conditions. The prediction time is
shortened obviously by Z-WLSSVR compared
with S-ILSSVR, which saves more time for engine
controller. Because of the success of constructing

thrust estimator for PDMC, the effectiveness and
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Fig. 3 Experimental results
Table 1 Experimental results
Flight ] ) ) i Prediction
. Algorithms MAX/107* MIN/107° MEAN/10"° STD/10~* .
condition time/ms
He0k Normal LSSVR 2.495 1 —2.177 5 —1.636 8 7.621 3 7.03 3 483
=0 km
Ma—0 S-LSSVR 2.600 8 —2.3797 —5.531 2 8.135 8 1. 69 860
“ S-WLSSVR 3.279 1 —2.463 1 —5.691 4 9. 080 2 1. 67 840
Z-WLSSVR 2.448 4 —2.448 4 0.416 7 8.276 8 1.09 550
He6k Normal LSSVR 1.997 2 —3.447 1 —0.015 4 7.261 2 6. 70 3 321
=6 km
M ! S-LLSSVR 1. 980 6 —3.499 1 0.414 4 7.390 7 1.53 760
“ S-WLSSVR 3.130 9 —3.077 8 20.941 0 10.484 0 1. 88 930
Z-WLSSVR 2.303 2 —3.354 3 3.186 1 8.185 1 0.43 210
Normal LSSVR 3.054 3 —3.482 7 3.738 4 6.024 2 7.03 3 483
H=12 km
Ma—0. 8 S-LLSSVR 3.455 5 —3.488 0 5.293 0 6.175 4 0.70 400
a S-WLSSVR 3.439 8 —3.455 3 5.858 1 6.327 0 2.93 1470
Z-WLSSVR 3.147 4 —3.498 2 6.237 1 6.191 0 0.33 160
Normal LSSVR 1.440 2 —1.569 7 3.864 5 5.095 1 6. 70 3321
H=18 km
M s S-LSSVR 2.414 1 —1.823 8 4.740 9 6. 345 2 0. 68 350
aThe S-WLSSVR 3.-147 9 —2.612 8 —4.522 2 8.286 0 2.55 1 260
Z-WLSSVR 1.574 2 —1.664 3 3.262 5 5.918 6 0. 40 200

MAX-—Maximum of RD, MIN-—Minimum of RD,STD-—Standard deviation of RD, MEAN-—Mean of RD, #SV-—Num-

ber of support vectors,Prediction time—Prediction time of thrust estimator
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feasibility of the proposed Z-WLSSVR are con-

firmed. Meantime, the appropriate weighting
strategy should be applied according to the actual

settings.
3 CONCLUSION

Recently, the intelligent engine control has
attracted much attention. As a representative,
performance deterioration mitigating control is an
advanced control concept for future aero-engines.
The design of thrust estimator becomes the key
issue for PDMC with high accuracy and excellent
real-time performance under the condition of per-
formance degradation. The normal LSSVR is uti-
lized to improve performance deterioration and S-
LLSSVR is used to enhance the real-time perfor-
mance. Considering the actual setting, a novel
weighting strategy is proposed to improve the S-
WLSSVR's drawback of reducing the real-time
performance. By the aid of the proposed Z-
WLSSVR, the accuracy of thrust estimator satis-
fies the requirement of PDMC and its real-time
performance is enhanced further. Finally, the nu-

merical experiments validate the proposed Z-
WLSSVR and its application.
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