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Abstract: The traditional algorithms for formation flying satellites treat the satellite position and attitude sepa-

rately. A novel algorithm combining satellite attitude with position is proposed. The principal satellite trajectory

is obtained by dual quaternion interpolation, then the relative position and attitude of the deputy satellite are ob-

tained by dual quaternion modeling on the principal satellite. Through above process, relative position and atti-

tude are unified. Compared with the orbital parameter and the quaternion methods, the simulation result proves

that the algorithm can unify position and attitude, and satisfy the precision requirement of formation flying satel-

lites.
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INTRODUCTION

Compared with traditional satellites, the mi-
cro-satellite gives much better performance with
lower weight and cost, shorter developing and
manufacturing cyclesd. But it also poses many
shortcomings such as bad performance in diversity
and precision. Thus formation flying is intro-
duced to satellites maneuver for the purpose of
overcoming above mentioned shortcomings™.
Such applications can be seen in distributed
radar, electronic reconnaissance, 3-D imaging and
space interferometer as well. However the bunch-
ing problem causes a sharp rise of complexity in
flight maneuver. The difficulty expands with the
increase of satellite number. Position and attitude
information becomes very vital in solving the
above mentioned problem.

The most straightforward way to obtain rela-

tive position and attitude information of formation
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flying satellite is using differential technique of
the absolute position and attitude information.
The relative position and attitude information
gathered by such technique is low precision. The
recent researches incline utilizing GPS or GPS-
like methods™®1,or are based on vision meterage

1071 And all separate satellite trajectory

technique
and attitude information into translation and rota-
tion. Using vector and direction-cosine matrix or
quaternion respectively to solve translation and
rotation. This isolated technique increases the
possibility of coupling error of translation and ro-
tation, which certainly adds system complexity.
The trajectories of moving objects can be
found by interpolation of given positions (points
and orientations ). Under such assumption, a
method utilizing dual quaternion curve is used to
interpolate the trajectories of formation flying
satellites. At first, the mathematics model of du-

al quaternion curve is constructed. The trajectory
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of principal satellite can be found by interpolating
method such as translation-rotation ( TR ) or
Then,

the relative position and attitude information of

translation-rotation-translation (TRT ).

deputy satellite can be found by working out the

dual quaternion kinematics equations.

1 TRADITIONAL SATELLITE
POSITION AND ATTITUDE AL-
GORITHMS

1. 1 Orbital parameter method

Orbital parameter method utilizes the num-
ber of principal and deputy satellite orbits to get
the relative position and velocity information.
Suppose that orbital parameters a, ¢, i.02,0, f,
E, and M denote the long semi-axis, the eccen-
tricity, the orbit inclination angle, the longitude
ascending node, the perigee angular, the true
anomaly, the eccentric anomaly, and the mean
anomaly respectively, u=w- f is the latitude an-
gular. Therefore, under principal satellite frame,

the relative position and velocity of deputy satel-

lite are
Jr =— ae,cos(nt — w,,)
vy = 2ae,sin(nt — w,,) (1)
12 = a[ — AQsiniycos (nt) + Aisin(nt) ]

in = ane,sin(nt — w,,)

<y = 2ane,cos(nt — w,,) 2)

12 = an[ AQsiniysin(nt) + Aicos (nt) ]
where subscript M and m denote the principal and
the deputy satellite systems respectively, n de-
notes the average orbital angular velocity. Orbital
parameter method can describe relative position of

formation flying satellites.
1.2 Quaternion method

Quaternion method is brought in as a com-
pensation of the orbital method to depict the rela-
tive attitude information. A quaternion is made
up of one scalar part and three vector parts,
shown as

qg=qtqi+taqitak=[qw ¢ @
where ¢, is the scalar part and ¢ the vector part.
The four parameters satisfy the following obliga-

tion equation

9 +qi+ta g =1 @y

2 MATHEMATICAL MODEL OF
DUAL QUATERNION CURVE

Dual quaternion curve is based on the quater-
nion and dual algebra theory. And the curve is
powerful tool for rigid body kinematics, since it
can easily describe the combination of both trans-

B8], shown as

lation and rotation
qg=4q+ ¢
1. 0 . 0 5
Iq = (cos ?,lsm >
where [ is the rotating axis, 0 the dual angle, 0=
O0+ed, and ¢’ the dual part. For the dual quater-
nion curve g=¢(¢), the corresponding translation

and rotation parts are trans(g) and rot(g).

3 DUAL QUATERNION CURVE
INTERPOLATION ALGO-
RITHM OF PRINCIPAL
SATELLITE TRAJECTORY

Because of the influence caused by disturbing
force etc, the satellite trajectory no longer follows
the ideal elliptic routine. In order to achieve pre-
cise control and meterage, it is crucial to obtain
the trajectory information at anytime.

As mentioned before, a movement is made
up of several continuous displacements. Take the
(m+1)th displacement for examplet™
P,= Q2 +es)* (io+r) s;r, e R,riy €ER

trans( Py rot(P;)

(6)
The (Gm—+1)th interpolated displacement sat-
isfies the following condition
q(t) = AP, (7
The real factor A, 70 is arbitrary, the rota-
tion part can be written as follows
Q1) = A (rig + 1) 0= 0.0um (8)

e
rot ()

R{”is assumed to be obtained after a normal-

ization on rot(P;), that is
1

R(o) - __‘_

(rio+r) 1 = 0,ym
7’,2.0 + o
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The signs of A satisfy
(R” — RP) % (R — R < (R” + RY) »
(R + R, i =0,+ym—1 (10)

The sign of the first position R{”is arbitrary,
the remaining signs are determined by Eq. (10).
The interpolating condition is obtained by solving
Eq. (8), that is

ibf(t,)cj = R

7=0

i =0,,m (1)

where 4" denotes the kth Bernstein polynominal,

coefficient C; is acquired by working out Eq. (11).

Then the interpolating function is obtained.

3.1 TR method

The interpolating function expression formu-

la is
. '
0o (1) = D0HDOC, (12)
where coefficient b;can be obtained by
0
& / VIRV
biHbi () = i b (@) 13
J

Unify the translation and rotation parts into
one dual quaternion g(:)™°, that is
qt) = quans () % g1 (1) =
!
[2 4+ D760 p, ] * g (14)

J=0

where ¢ is the real factor, coefficient p;unknown.
In order to avoid the polar point, the scalar part
is normalized to 2. Then the interpolating condi-
tion is

!
PNAYIEE (15)

=0
The algorith;n is as follows:
(1) Normalize the
Eq. (9), then assign the sign using Eq. (10).
(2) Work out Eq. (11) to obtain C;.
(3) Work out Eq. (15) to obtain p,.

(4) Combine translation and rotation parts

rotation part using

using Eq. (14), then work out Eq. (13) to obtain

b;.
3.2 TRT method

The TR method is influenced by the selection
of origin. The dual quaternion curve jumps when

the interpolating position is close to the origin. A

sharp change of curvature is apparently seen. In
order to avert such occasion, a refined TRT
method is introduced™. The rotational motion
¢.0: () of degree k is composed of two translational
Q-motions g4 () and g% (¢) of degree {; and /,
respectively.

Unify the translation and rotation parts into
rotation part, shown as

q(t) = @ () % g (1) % ¢L (1) =

/1
(24 D000 PV ] % g0 %
71=0

[2
[2 + 52]’%(” pjf)] (16)

J,=0
The interpolating condition is
l

[1 2
(oo (1) % Qoo (1)) D00 () PV 4= & >0 (1) pi? =

=0 Jp—0

(Gro () * e (D) 8 an

The refined TRT method can effectively
avoid the strong vibration around the origin.
However, for object like satellites whose size is
far smaller than its trajectories, the error is quite
big. So the TRT method is used only when the
deputy satellite is close to the principal satellite
trajectory. Fig. 1 shows the trajecties obtained by
interpolating with both TR and TRT methods.

The curvature is smooth and has no jump.

Pi=10 Pt =00

Principal satellite
trajectory

Origin
trajectory

Pit=025

Fig. 1  Principal satellite trajectories obtained by in-

terpolating

4 DUAL QUATERNION CURVE
MODELING OF DEPUTY
SATELLITE POSITION AND
ATTITUDE

4.1 Transform of deputy to principal satellites

Dual quaternion is a powerful tool in rigid
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body kinematics and coordinate transform. As
can been seen in Fig. 2, coordinate system O re-
volves an angle of § around special vector I, and
makes a translation of d along I at the same time,

then becomes a new coordinate system N.

Fig. 2 Geometrical display of screw

The above mentioned rigid body movement
can easily be expressed with dual quaternion

curve, shown as

18

q = | cos

where [=1+e(pX1),0=0+ed, p is the vector
pointing from coordinate system O to one point on
the rotation axis. Judging from Fig. 2, if dual
vector I and dual angle § are given, the traditional
complex coordinate system transform becomes
quite simple using dual quaternion curve. Define

the following equation''?!

~ €
g=q+teg =g+ 5r'q=

qu%q oV a9

where r denotes the position vector between two
origins.
Therefore, the kinematics equation can be

expressed as

S IR ST
q= 5 Wn ° g = 54 ° Wy (20)
where dual vector wfy and wdy are called spinor.

The spinor is expressed as®

Wiy = Wiy + e 4 @iy X Y (@2D)

The relative movement between deputy and

principal satellites is depicted by the dual quater-

nion (}M,,,:qM,,,+€q’M,,I , and each centroid is the o-
rigin. They can be rewritten as

S , N
Qi = Gt + €q' 1 =

g
Qo + gr%z ° G (22)

where ¢y, denotes the relative attitude quaternion
curve, ry,=ry—r, the relative centroid position
information between deputy and principal satel-
lites, and ri,, the projection of position vector on

principal satellite frame.
4.2 Dual quaternion curve updating

This paper chooses spiral vector method to
calculate the renovated dual quaternion curve be-
tween deputy and principal satellites™*!, that is

AA h [COS &(tk) &(tk)sin (}(tk)
quzk 2 ’d(tk) 2

where o denotes the spiral vector along spiral ax-

} (23)

is, that is
o= Wlf, + 10 X &l (24)

The fourth order trigonometric series ap-

proximation is used

o S @)t e
T2 8 384
- . o, (25)
1 1 sin o(ty) o i - o(t)?
ot 2 2 48
And the kinematics equation for gy, is
: 1 - . 1~ -
Qun = 5 @in 4 = 54 ° W (26)

From above equations, we can obtain the up-

dating formula
éMmtk o= qAMmrk ° Aémnk 27)

where éM'W and (}M,,,,kuare the former and the cur-
rent dual quaternion curves respectively, A(}M,,,,/( is
the updating dual quaternion.

After updating, position and attitude dual
quaternion of deputy to principal satellites is

R . R B
Dim, = Qrame, | © Goame, | =

M —
q;'\/ltrltk+1 + ?rMmthrl ° qAr'\/I/utAerl -

qu/M 1 + Sq, Mmt,, - (28)

where gy, is the attitude quaternion. and rela-

tive position vector of deputy to principal satel-
lites is

Fatme, | = 2q’MmrHl ° qj}m,w (29)

Judging from Eq. (29), if the initial position

and attitude information of two satellites is given,

and the relative velocity and angular rate are mea-

sured, it is realistic to obtain the real-time rela-

tive position and attitude information of deputy to

principal satellites.
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5 DATA SIMULATION

Orbital parameters of two satellites are as
follows.

Principal satellite;

ay = 6 800 km, ey, = 0, iy, = 30°,
0y = 0,0y = 60°,fy = 0°,
Deputy satellite:
a, = 6 800 km,e,, = 0. 000 000 01,
i,, = 30.005°,8, = 0,w, = 60°,f, = 300.025°

The relative attitude angular velocities to the
inertial system are wy=[001], w,=[00 1], re-
spectively. The initial attitude angles are 0y, =
[0.05° 0. 05° 0. 05°],0,,=[0.05° 0 0].

The simulating interval for position and atti-
tude error is Ar=0.1 s, and simulation lasts for
t=26 000 s.

The real value of relative position and atti-
tude is denoted by F, and the calculated value is
r, the simulation error is r =7 —r. Comparing
the ideal position and attitude data calculated by
orbital parameter and quaternion methods with
the data obtained by the algorithm in this paper,
the position and attitude error is obtained.
Figs. 3-6 illustrate the position and the attitude
angle errors obtained using orbital parameter and
dual quaternion methods respectively. The atti-
tude angle includes rolling, pitch and yaw angles.

In Fig. 3, the errors along axes x, y and z
are 0—3.9, 0—2.1, 0—3.7 cm respectively. In
Fig. 4, the corresponding errors are 0—1.1, 0—
0.9, 0—1.8 cm respectively. Comparison of
Figs. 3,4 shows an obvious improvement in error
using the dual quaternion method. The position
error curve shows a periodical trend, which can
satisfy long time functioning formation flying re-
quirement.

Comparing Figs. 5,6, the estimation preci-
sion of the roll and pitch angle is basically equiva-
lent. However in the estimation of yaw angle, the
precision using dual quaternion method is much
better, which confines the attitude angle error to
within 0. 03°. Results show that using dual
quaternion method, the convergence rate is much
faster and stability of the estimation error is much

better.
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Fig. 4 Position errors using dual quaternion method
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Fig. 5 Attitude angle errors using quaternion method
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Fig. 6 Attitude angle errors using dual quaternion

method

6 CONCLUSION

This paper constructs a position and attitude
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unified model for satellite formation flying based
on the dual quaternion method. First TR and
TRT interpolation methods are used to calculate
the principal satellite trajectory during formation
flying. Then using dual quaternion modeling, the
position and attitude information integration of
deputy satellite is accomplished. The simulation
results show that the proposed algorithm can ob-
viously improve both position and attitude preci-

sion.
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