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Abstract: Based on the traditional fifth-order weighted essentially non-oscillatory (WENQO) scheme, a smoothness

indicator is introduced to improve the capability of WENO schemes for resolving short waves. In the construction

of the new smoothness indicator, the proportion of the first-order term in the original smoothness indicator is re-

duced by replacing the square of the first-order term with the product of the first-order and the third-order terms.

To preserve the fifth-order of convergence rate, the smoothness indicator is combined with the method of Borges,

et al. The numerical results show that the proposed schemes are more suitable for simulating turbulent flows or

aeroacoustics problems than the previous fifth-order WENO schemes, thanks to its improved resolution on short

waves.
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INTRODUCTION

Weighted essentially non-oscillatory ( WE-
NO) schemes, originally proposed by Liu, et al""
and later improved by Jiang and Shu* have spread
rapidly in the field of computational methods for
hyperbolic conservation laws. The key idea of
WENO schemes is an adaptive interpolation or re-
Therefore,

schemes are specially suitable for the problems

construction  procedure. these

containing both discontinuities and complex

smooth solution features M.

However, numerical tests indicate that these
schemes are generally not optimal for computing
turbulent flows and aero-acoustic fields because
they can lead to a significant damping of turbulent
or acoustic fluctuations. This damping mainly
acts on short waves with respect to the grid

lengths which can not be ignored in turbulent

flows and aero-acoustics problems. Using a high-
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er order WENO scheme can alleviate this prob-
lem, but the computation cost will be increased at
the same time. Compact schemes could be a good
choice for these problems because of its better
spectral resolution property!"®. But these
schemes often produce systems of linear equations
to be solved and also need additional nonlinear
treatment to tackle the problems of discontinui-
ties.

Nevertheless, with the help of the optimized
WENO schemes™, the error in wave number
space can be minimized with assuring the order of
convergence, which reduces the damping behav-
iour in turbulent or aero-acoustic flows. As for
the smoothness indicators of WENO schemes,
those developed by Jiang and Shu® added signifi-
cant numerical damping into the schemes for
short waves at about 6—8 points per wavelength
(PPW). Therefore, Wang and Chen"*! proposed a

series of smoothness indicators for optimized WE-
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NO schemes to simulate short waves with better

Nevertheless, these schemes!™

resolution. are
usually restricted to the case of r==4, which cor-
responds to the WENO schemes using stencils
with at least seven points™,

By replacing the square of the first-order
term with the product of the first-order term and
the third-order term, a new smoothness indicator
for WENO schemes is developed using five-point
stencil. Combined with the weight computing
method™®, a fifth-order WENO scheme is devel-
oped with less dissipation and better resolution

for short waves.

1  TRADITIONAL FIFTH-ORDER
WENO SCHEME

A scalar hyperbolic conservation law is con-
sidered
du | 9
f % =0 (D
where x and ¢ stand for space and time, respec-
tively, u (x, t) is a conserved quantity and
f (u(x, t)) the flux. The considered grid is uni-
= iAr,i=0,1,s N, I, =[x 1,25

xii12 )]s and the cell boundary is defined as ;¢

form, x;

=x;, &= Ax/2. Then, the semi-discretized conser-
vative difference scheme for Eq. (1) can be writ-

ten as

du, (1)

dr 77E(ff+1x2 — S (2

where fi,;m are the numerical fluxes.
The fifth-order WENO scheme is based on a
five-point stencil which is a union of three three-

point candidate stencils with an upwind bias. For

af>0, the stencil is shown in Fig. 1. As for the

Ax i i+1

Fig. 1 Stencil of fifth-order WENO scheme

case of %<O, both the stencil and the flux can

be obtained symmetrically. For nonlinear prob-
lems, a flux-splitting procedure such as Lax-
Friedrichs splitting is also needed.

The numerical flux in Eq. (2) can be written

as
];‘H»lr’? :wt:f?+l"2 +w1 _];‘11'71/’2 +w2_];?+1,"2 (3)
where
Fhn = é Qfy —T i+ 111D
Ly = é (— [ 5 210

P = %<2ff 5 — fie)

fi =f Gz )
The weights w, in Eq. (3) are defined as'*

19 Qg d/c
wf® =T, q = B o €9
2
=0

In this article, variant k is set as #=0,1,2,
if not specified. The parameters ¢ and p are often
set to 107 % and 2, respectively. Coefficients d, =
1/10, d, =3/5, d, = 3/10 are optimal weights,
with which the fifth-order upstream central

scheme is achieved.

The smoothness indicator 8Y® measures the

smoothness of the flux on the candidate stencil S,
which is given as™>

2

[8215> :ZA 20— 1jr+1z<d ,f (1”)) A 5)

=1

where ];k (x) is the interpolation polynomial of
flux on candidate stencil S,. The explicit formu-

las of this smoothness indicator are

(J%) (f , Zf,‘—l +f1)2 —|—%(f172
4f,>1 +3/)°
g1 =B r o fi At o — fi)?
1 12 —1 J i J i+l 4 +1 —1
IQ(JS) :173(][_2](‘ +f )Z+
2 12 i i+1 i+2
TR R )
(6)
It can be written as
@> =LA+ 1B, %)
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where Ak and

Bk represent two terms of the

right hand sides of Eq. (6), respectively.

2  NOVEL SMOOTHNESS INDICA-
TOR AND WENO SCHEME

Improvements on smoothness indicator of
WENO schemes have been made for different
problems. For the steady shock problem, Zhang
and Shu™" introduced a smoothness indicator for
fifth-order WENO to improve the convergence

property. Furthermore, Wang and Chen'"

pro-
posed an alternative definition of smoothness indi-
cators for the optimized WENO schemes on a
(2r—1)-point stencil

r—1 T /AN 2
ﬂZJS) _ 2 [J "+ A %f"(r)d&r} (8)

=2 Ti-1/2

With Eq. (8) a better resolution for short
waves can be achieved. This can be attributed to
that the first-order derivative of the approximate
function is left out in the smoothness indicators.
However, r in the smoothness indicator (Eq.
(8)) is restricted to r=4, corresponding to sten-
cils with at least seven points. For five-point (r=
3) stencil S (Fig. 1), however, there is only the
second-order derivative in this smoothness indica-
tor, which will cause instability in numerical ex-
periments.

On the other hand, the Taylor expansion can
be used to analyze the smoothness indicator (Eq.
(6)) in smooth region. Since the major parts of
A, and B, are ff Ax' and 4]",,2 Ax*®, respectively,
the order of A, is higher than that of B, by two,
which means that A, is much smaller than B, in
the smooth region. To match the order of these
two terms and to decrease effect of the first-order
derivative, we consider a smoothness indicator in
the form

B =fIAxt +m | fif7 | Ax' +O0AL") (9)
where m is used to adjust the proportions of two

(Q)

terms. The expression of 8% used in this work is

BEQ) =(fi=

fil ‘+| fi 1 _ff ‘) |_
2fi+1 +fi+2 |

—2fe P S —
ff2+2fi1_

m

,QiQ) =(fi1 —2f; +f:+1) +*(|f:1*
f; |+‘ fi_fi+l |) ‘_fi2+2fi [
2fm + fier |

ﬁéQ) :(f 2f,+1+f1+)) +*(|f*
f;+1 |+‘ f{+l_fi+2 |) ‘_fz 2+2f;1_
2fi1+ fire | (10)

Since the approximations of the third-order
are not available for three-point candidate sten-
cils, the data on the whole stencil can be used.
As a result, the differences among smoothness
indicators of candidate stencils can be reduced.
Therefore, the weights will be even closer to op-
timal weights, and the resolution will be im-
proved while some stability is sacrificed.

The sufficient condition for WENO scheme
achieving fifth-order accuracy is'*

B =D+ 0CAzx*)) an
where D is some nonzero quantity. In fact, this
condition comes from

w, =d (1 +0(Ax")) a2z

However, the new smoothness indicator can-
not satisfy the condition (Eq. (11)), and the final
WENO scheme with this smoothness indicator
only has a convergence rate of fourth-order. For-

117 introduced a different

tunately, Borges, et a
way to compute the weights of WENO schemes
which avoids the restriction of condition (Eq.
1.

the novel smoothness indicator to preserve the
fifth-order accuracy of WENO scheme.

Hence, this technique is combined with

In this

»
method, a, in Eq. (4) is set as d, (1+(‘8 +e)P>
A

. . T
Therefore, the accuracy requirement is put on E
k

Considering accuracy, different from the original

form™*, ¢ is defined as
e =L (frs =S 6 —
4fi+l +ff+2)(fi 2 _Zf;+f,'+2) “F
(—fiot2fin —2fin+ fi)?]

13

And the final weights are
Q2
Q) . _ %k
Wy -
Za;QZ)

=0
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@l —dk<1 + (14)

o)

~% avoids zero denominator, and in-

where e =10
teger p enlarges the differences among the
weights on the candidate stencils, which is often
set to 2.

In smooth region, after Taylor expansion,
we can have

r=0(az") . B@ =0(az") (15)

Then (Q) =0(Ax*) and i’ =d, (1+0CAZ")).

As a result, the condition (Eq. (15)) is satisfied.
Therefore, the new WENO scheme can achieve
fifth-order accuracy for smooth problem.

Since the formulas Egs. (13—14) are differ-
ent from those in Refs. [2,12], the time efficien-
cy of the resultant scheme is not the same as the
former ones. According to our numerical tests,
the fifth-order WENO scheme using the new
smoothness indicator consumes roughly 10%
more CPU time than those schemes using previ-
ous ones for linear problems. As for Euler equa-
tions, this difference on CPU time is reduced to
only about 3%.

As for the parameter m, according to a large
number of numerical tests, m=0. 28 shows prop-
er numerical viscosity and preferable resolution on
Therefore, it is the choice of the

short waves.

present work.

3 TEST ON CONVERGENCE RATE

The fifth-order accuracy of the new WENO
scheme, abbreviated as WENO-Q here, is valida-
ted. The tested problem is

(714 Ju

_|_7
(16>

u(x,0) =u, ()

The computational domain is —1<Cx<{1 and
periodic boundary condition is implemented. The
initial conditions is u, (x) =sin(xx) and the end
of simulation time ¢ is set to 1. The third-order
TVD Runge-Kutta method"'* is employed as time
There-
fore, the time accuracy is effectively fifth-order.

The Ll ’ L;A;

integration with time step Ar—(Ax)**.

errors and the corresponding orders

of accuracy are shown in Table 1. Obviously, the
WENO-Q scheme has achieved the designed fifth-

order accuracy.

Table 1 Convergence rate test for linear advection equation
(uy (x)=sin(nx))
Number of L, error L, order L._error L. order
zones
20 1.23X10°* 1.96 10 *
40 4.07X10" 4.92  6.39x10°* 4.93
80 1.29X10°° 4.97  2.02X10°° 4.97
160 4.05X10°7 4.99  6.37X1077 4. 99

320 1.27X10°°¢ 4.99 1.99X10 ¢ 4.99

4 NUMERICAL RESULTS

In this section, two numerical tests are taken
to verify the advantage of the proposed WENO
scheme, For comparison, the fifth-order WENO
scheme in Refs. [2,10] and the fifth-order up-
stream central scheme are also tested, named as
WENO-JS, WENO-Z and UP5, respectively.
The third-order TVD Runge-Kutta method™" is

employed as the time integration approach.
4.1 Linear advection equation

To validate the ability of WENO-Q scheme
for capturing the short waves, which is important
for tackling the small-scale flow structure, the
problem (Eq. (16)) with a periodic initial profile
uo () =sin(xx/4) is tested. The computational
domain is [ —16, 16 ] and the periodic boundary
condition is implemented. The grid length is
Ax=1 which means 8 points per wave. The Cou-
rant number is set to 0. 1 and the end of simula-
tion time here is 1 =80. The result is shown in

Fig. 2 with the exact solution displayed by solid

line. From F1g 2, it can be found that the result

1.0 Exact
0.8 o WENO-Q
0.6 = WENO-JS
: + WENO-Z
041 = UPS
0.2
s 0.0
-0.2F
-0.41

-15 -10 -5 0 5 10 15 20

Fig. 2 Single sine wave (N=32,r=280)
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of WENO-Q shows the best behavior, since it is
almost the same as the exact solution. It is a little
surprised that UP5 does not perform best, which
implies there may be some optimization in wave
number space for the proposed smoothness indi-

cator just like those in Ref. [8].
4.2 Shock-entropy wave interaction

This test case is taken from Ref. [ 2], and al-
so called Shu-Osher problem. The governing
equations are the one-dimensional Euler equations
with the initial conditions

J(?). 857 143,2. 629 369,10. 333 33)

—5 <L ax<<—14
(p9u9p>: .
1(1—0—0.251n5x,0,1.0)
—4 < x5

an

As recommended by Balsara and Shu™’, the
local lax-Friedrichs (LLF) splitting is used for
linearly degenerate characteristic fields and the
Roe splitting with entropy {ix(RF) is used for the
genuinely nonlinear characteristic fields. The
densities of the results at t =1.8 with N = 250
grid points are plotted in Figs. 3—4. The solid
lines in the figures mean "exact solution” attained
by WENO-JS with 4 000 node points since the re-
al exact solution is not known for this problem.
From Figs. 3—4, it can be seen that there is no
obvious difference among these results except in the
"blow-up” region, downstream of the shock. In
this region, WENO-JS scheme shows much vis-
cosity in predicting post shock entropy waves at

this grid resolution, while WENO-Z gets a better

resolution, and the wave profile of WENO-Q is
50
Exact
4.5 - WENO-Q

4.0)
35
3.0
25
2.0
1.5
1.0
0.5

<~ WENO-JS
WENO-Z

+

S5 4 3 -2 -1 0 1 2 3 4 5

Fig. 3 Shock-entropy wave interaction with density

(N=250, t=1.8)

Obvi-
ously, for this entropy wave problem, WENO-Q

the one most close to the "exact solution”.

demonstrates advantage in comparison for its low
dissipation and high resolution.

481
4.6
44
4.2
4.0
3.8
3.6
34
32
3.0

06 08 10 12 14 16 18 20 22 24 26
x

Fig. 4 Enlarged portion of Fig. 3 downstream of shock

4.3 Shock vortex interaction

This test case is also taken from Ref. [2]
which describes the interaction between a station-
ary shock and a vortex. The computational do-
main is [0, 2] X [0, 1]. A stationary Mach 1.1

shock is positioned at x=0.5 and normal to the

z-axis. The left state is (pyu,v, p) =(1,1. 1y,
0,1). A small vortex is superposed to the flow
left to the shock and centers at (x.,y.) = (0. 25,
0.5). This vortex can be described as a perturba-
tion to the velocity (u,v), temperature T= p/p,
and entropy S=In(p/p") of the mean flow and it
is denoted by the tilde values

2
all—z )

u =ere sinf
2
v = —ere 7 ) cosh
S"=0
2
T/ _ (y_ 1)62620((1 T )

40(’}’

(r—2)"+(y—y)?, ¢ indi-

cates the strength of the vortex, a controls the

where r=r/R,r=

decay rate of the vortex, and r is the critical radi-
us for which the vortex has the maximum
strength. Here these parameters are set as ¢ =
0.3,R=0.05,0a=0. 204.

A uniform grid of 200 X100 is employed and
WENO-Z and WENO-Q are tested here. The
pressure contours of the results at 1t = 0. 6 are

plotted in Fig. 5. In Fig. 5, each of the two sub-
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figures has ninety contours ranged from 1. 19—
1.37. From Figs. 5(a—b), the results give ap-
proximately the same resolution. Carefully com-
pared with WENO-Z, WENO-Q generates more
numerical noise and gives a slightly thinner shock
profile, which should be the result of its smaller

numerical viscosity.

1.0

0.8

0.6

0.2

0.0
0.4

1.0

0.8

0.6

02F

(b) WENO-Q

Fig. 5 Shock vortex interaction with pressure contours

1.19—1.37 (t=0.6)

S CONCLUSION

In the presented study, a novel fifth-order
WENO scheme with an improved resolution on
short waves is developed by using a proposed

smoothness indicator. It is implemented through

replacing the square of the first-order term in tra-
ditional smoothness indicator with the product of
the first-order term and the third-order term. As
the proportion of the first-order term is de-
creased, the high resolution can be achieved with
a little bit of loss of stability. To preserve the
fifth-order of convergence rate, the method of
Borges, et al'’® is combined with this smoothness
indicator.

The accuracy test shows that the aim of the
fifth-order accuracy of the developed WENO
scheme is achieved. Compared to the previous
fifth-order WENO schemes, this scheme con-
sumes about 10% more CPU times for linear
problems and about 3% more for Euler equa-
tions, which means the increase of computing
cost is relatively small. Furthermore, the numer-
ical results show that this scheme has a better ca-
pability for resolving short waves than the previ-
ous ones, which can not be ignored in turbulent
flows and aero-acoustics problems. Therefore,
the proposed WENO scheme can be a better
choice for these problems.

The idea of constructing the proposed
smoothness indicator can be extended to the high-
er-order WENO schemes. Since Wang and
Chen'™ has already proposed a series of smooth-
ness indicators for these schemes, there should be
a comparison of these two kinds of smoothness

indicators. This will be presented in a future

work.
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