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Abstract: A straightforward multi-scale boundary element method is proposed for global and local mechanical anal-
ysis of heterogeneous material. The method is more accurate and convenient than finite element based multi-scale
method. The formulations of this method are derived by combining the homogenization approach and the funda-
mental equations of boundary element method. The solution gives the convenient formulations to compute global
elastic constants and the local stress field. Finally, two numerical examples of porous material are presented to
prove the accuracy and the efficiency of the proposed method. The results show that the method does not require
the iteration to obtain the solution of the displacement in micro level.
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INTRODUCTION

Multi-scale mechanics method that evaluates
the effective mechanical properties of heterogene-
ous material is becoming an important method in
nowadays engineering. Since the original work
was achieved by Bensoussan, Lions and Papanico-

[ the asymptotic homogenization method

laou
has been developed for many applications such as
topological optimization of composite materi-

al**1, multi-scale computational modeling of ma-

81 etc. To date, most multi-

terial degradationt
scale models in the above areas have been carried
out within the context of the finite element meth-
od (FEM)™2 | The main problem of FEM based

approach is the necessity of discretization through

out the representative volume element (RVE).
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This can result in a complicated modeling process
when the microstructure of material is not regu-
lar, especially in the case of random defects dis-
tribution within porous material. In order to
model such composites explicitly, a large number
of elements are required, which costs a large a-
mount of computational time and computer mem-
ory allocation'*,

The boundary element method (BEM), an
important method, quite different from FEM,
provides a novel approach for engineer to ease the

analysis in some cases™*1%,

The main advantage
of BEM, the reduction of the dimensionality of a
problem, becomes very attractive in the case of
large scale problems that are as computationally
expensive as the large scale modeling''?. Fur-

thermore, the fast multipole method (FMM)®
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which reduces the number of operations and
memory for solving the equation systems has
been developed to increase the efficiency of BEM
significantly. Therefore BEM is becoming a bet-
ter way for some people to develop multi-scale
model.

Within the framework of asymptotic homog-
enization theory, BEM based multi-scale models
have been developed for predicting the effective
elastic properties of linear elastic fiber compos-

L[13.19]

ites ]tz

Kazuhiro, et a used wavelet method
to reduce the computational cost of BE-based
Okada, et al wused

boundary element based homogenization method

homogenization analysis.

to obtain the elastic properties of rubber modified
epoxy resin and particulate composite materi-

s“1% . Song Young Seok, et al used the multi-

al
scale BEM to predict the effective elastic proper-
ties for polymer based carbon nanotube compos-
itest®. Recently, FMM has been introduced into
multi-scale BEM and used to estimate the effec-
tive elastic properties of the porous material"*?°/,

However, these multi-scale BEM developed
within asymptotic homogenization theory are
complicated due to the solution process of a set of
balance equations in different scales. In order to
obtain the solution of the displacement in micro
level, an iteration scheme must be used®. This
reduced the efficiency of this method. In this pa-
per, the formulations of multi-scale BEM are de-
rived without the usage of asymptotic homogeni-
zation theory. These formulations are more sim-
ple and straightforward than the pioneer ones. As
a result, the proposed approach does not need the
iteration to obtain the solution of the displace-
ment in micro level. It provides another choice
other than asymptotic homogenization multi-scale
BEM to estimate the effective properties of peri-
odic linear elastic material. To accomplish the
work, the displacement field is decomposed in
terms of the linear and fluctuating items. Then,
the balance equations are solved by the single-re-
gion BEM. The solution provides the formula-
tions of micro-stress field and the effective elastic

moduli of the material. Following the derivation

of the fundamental equations, two numerical ex-
amples for the porous material are presented to
prove the accuracy and efficiency of the presented

method.

1 BASIC EQUATION

1.1 Theoretical framework of multi-scale method

The homogenization method"" is employed
to construct the collect form of the displacement
field representation in the domain of RVE which
represents the microstructure of the material
(Fig. 1). Let x denote the position of a point in
RVE. Without generality loss, the displacement
field within RVE is decomposed in terms of the
linear and fluctuating items by

w (x) =A,x; +u, (D
where A, are linear coefficients and u, denote the
fluctuating displacements. Based on the frequent-
ly used concept of homogenization, the homoge-
neous (effective or global) strain ¢ and stress o
are defined as the average of the local field though
out RVE by

P —_ 1
€7|V\jv€ dx, o |V\ng dx (2)

where ¢ and ¢ are the strain and the stress field
at the local level, respectively, V is the domain of
RVE. When some of the heterogeneities are voids
or cracks, the deformation of which is not defined
pointwisely, the homogeneous strain and stress
are redefined as the integration along the outer
boundary of RVE by
e = ‘%Lvu X).n dx ¢ = WJWE (u@n) dx

3)
where (a@,b),; = % (ab; +a;b;), uis the dis-

placement, E the elastic stiffness, and n the nor-
mal vector at the outer boundary of RVE, i. e.
V.

The accurate estimation of the overall re-
sponds of RVE is directly related to the applied
type of boundary conditions. Four types of
boundary conditions can be used: Uniform trac-
tions, uniform displacement, mixed boundary

conditions and periodic boundary conditions 2%,
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Fig. 1 Illustration of material with periodic microstruc-
ture

Nowadays, the periodic boundary conditions

(PBC) are usually preferred since they provide

the most reasonable estimations of mechanical

properties of heterogeneous materials, even in the

cases where the microstructure is not period-

[8,27]

ic For the two-dimensional case, PBC are

presented as
=u', u" =u" (4
R=—t,t"=—1" (5

where the superscripts L., R, T, B stand for the

R

left, the right, the top and the bottom parts of

RVE boundary, respectively (Fig. 2), t is the
traction defined through Cauchy's relations

t=o-+n (6)

By combining the Egs. (1, 3—4), we can

prove that the linear coefficients A, appear in

Eq. (1) equate to homogencous strains e .
Therefore, Eq. (1) is reformulated as
u (x) =e ;x; +u D)
X
]

Fig. 2 Schematic representation of typical RVE under
periodic boundary conditions
Eq. (7) connects the homogeneous strain and
the displacement filed at different scale. Finally,
the theory framework can be presented by a set of
equations:

(1) The decomposition of displacement (Eq.

(7).
(2) Periodic boundary conditions (Egs. (4 —
5)).
(3) Definition of homogeneous quantities
(Eq. (3)).
(4) Equilibrium equations
0., =0 €))
(5) Displacement-strain relations
€ :%(u;_j—Q—uj,,») €))
(6) Constitute relations at microscopic scale
o7 =Ejuen 10>

Therefore, in the theoretical framework
presented here, the fluctuating displacement is
the fundamental unknown variable. The solutions
of these equations give the relations between
homogeneous strain and the fluctuating displace-
ment. Then the formulation of the micro-strain
and stress are derived by Egs. (9—10). By apply-
ing the homogeneous Eq. (3), we obtain the
global stress and strain. Finally, the relations be-
tween these homogenous quantities provide the
formulations of effective elastic constants of the
material. Based on this approach, several kinds of
multi-scale mechanical method can be developed
by applying different numerical method. For ex-
ample, the finite element based method as well as
fast Fourier transforms(FFT) based method are
developed by Suquet, et al®*. The high-fidelity
generalized method of cell® can also be derived
by combining this multi-scale approach and the
method of weighted residuals. In the following
section, we will derive the formulations of a
straightforward BEM based multi-scale method
by combining the theoretical framework and

BEM.
1.2 Fundamental equations of multi-scale BEM

For the

boundary integral equation can be written as

two-dimensional problem, the

oy - uk—Q—J Ty + us dS:J U, «1,ds (1)
S S

where u;, ¢; are the displacements and the trac-
tions on the boundary S. respectively, T, U,
the fundamental solutions given in Appendix, and

¢; is the so-called free term™* , S the boundary of

‘1’]
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the solid domain within RVE. The symbol 9V
mentioned previously is the subset of S. In order
to derive the multi-scale boundary integral equa-
tion, the displacement in the above equation is

substituted by Eq. (3) as

_ , -, _
Cip ® € p + Cp * U +J T[k *E T d§+
S

J T[k . ;lg.dS:J U[k o 1y dS (12)
S S

where ", (j=1,2) are the location of the source
point and «’, the fluctuating displacement at the
source point. In order to solve the integral equa-
tion numerically, the boundary of RVE is dis-
cretized into a series of elements. To simplify the
formulation, we choose the constant boundary el-
ement to discretize the boundary of RVE, there-
fore, the boundary fluctuating displacements and
tractions keep constant. Write the discretized
form of Eq. (12) for every element as

.\P

Cp *® ;kjl‘i +C/k . Ijtz + [ZJ‘ T//, * X dS} . ;@ +

p=1

N, )
Sat+| 1 ds:th j Ui ds (13)

p=1 /; p=1 */;

where z! are the coordinates of "7’ boundary ele-

ment’s center, u} the fluctuating dlsplacements of

! !

i’ boundary element, ¢/ the tractions of ' p
boundary element, N, is the total number of
boundary element, T and U} are the fundamen-
tal solutions of the source point located at the
center of "¢’ boundary element. After performing
the integration, a system of linear algebraic equa-

tions is obtained as

Hlp ¢ Z;f +Gﬁp Bk} ° 5/1
l,k:1,2andi,p:1f]\],, (14)
where
Hijp —Cp ® 61,, +J T// ds (15)
p
L=—] Ui ds (16)

b/)

Ny

%:_C/k ’T;_ZJ T;A ¢ X; dS (17)
S/’

p=1
The method for calculating Hj, and G, can
be found in many literatures about BEM, while
Bi can be calculated by numerical integral meth-
od like Gauss integral method. The quantities u/

and ¢} represent all the values of fluctuating dis-

placements and tractions before applying PBC.
PBC can be introduced by summarizing the corre-
sponding items in Eq. (14), i. e. if u/" =u}  and
t1t =—14" where the subscriptions p+ and p—
denote the corresponding boundary elements in
PBC, we present the unknown variables uf~ and

~ by ul" and —#" in Eq. (14).

the substitution of the original coefficients HJ,.

This results in

and G}, by the new coefficients Hj,+ +Hj,— and
i+ — Gi,—. Repeating this procedure until all
the redundant unknown variables in Eq. (14) are
eliminated, then we obtain the final system of e-
quations

K-X=B-.¢ (18)
where X denotes the vector which is composed by
ul and t7. After solving Eq. (18), all the varia-

bles along the boundary are fully determined.
1.3 Homogenized constitutive equations

The homogenized constitutive relations can
be expressed as the relations between the ¢ and
e. According to Egs. (3—7), the formulation of

homogeneous stress can be expressed as

O ij :|7‘1/‘J‘ VE,];\,/TZ/(;@-I,. TL ;l/) dS (19)

Write the discretized form of Eq. (19) for ev-

ery element as

N

:'\"p
€ g J E junx, ds + Zuﬁj Eun,; ds

p=1" 5 p=1 Sy

[V

o=

20)

Eq. (18) implies that the fluctuating dis-

placements of 'p" boundary element are the linear
functions of homogenous strain as

ul —FZ},”E n @20

The substitution of Eq. (21) into Eq. (20)

gives the relation between ¢ and ¢ as

_ N
»
_ €,
o ,'j:izj‘ E,ﬂ,ﬂ’l{.T,—dSﬁL
‘ V ‘ p=1 S/;
E
o ZF}’Z’J Eun, ds (22)

P

The simphflcatlon of Eq. (22) gives the ho-

mogenized constitutive relation

G,,:Eg,/dE kL (23)

where E; are the homogenized elastic constants.
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Based on Egs. (22—23), we obtain the formula-

‘[iOn Of Ezjkl as

N/) J'
E. — =1 Sp
ik —

N
P .
'kl
Ejonpa,ds+ DO F /J E;un, ds
p—1 Sp
|V

24

Eq. (24) contains only the geometric and
physical parameters of RVE. It can be used to
calculate the equivalent elastic constants of mate-
rial if the microstructure of the material is

known.
1.4 Formulations of micro-field

Estimation of micro-stress is important for
many applications such as modeling material deg-
radation and fracture. In this section, we will de-
rive the formulation of the micro-stress. In the
theoretical framework of BEM, the displacement
of any given point x' within RVE can be ex-

pressed as
M](x/) :J U[k(x/9x> 1y d\_J T/k(x/,x) Uy dS

(25)
where x is the point locate at the boundary. The

discretized form of Eq. (25) is presented as

N
»
M/(.x/):EJ‘ U,k(x/,x) ’Z£ ds —
pr=1 S/,
N

S Tt o - ut ds (26)

p=1Y5,

Along the boundary element S,, the trac-
tions keep constant, and the displacement is the
summation of the constant fluctuating displace-
ment and the linear item in terms of coordinates.
Therefore the partial differential of displacement

is expressed as

N'P .
s ) = 20| U (a0« tt ds—
=175,
N,
S Tt ds 27

p—1Y5,
where the subscript 'j' is the partial differential in
terms of x’;. In the elastic strain constant case,
the stress is the linear function of the partial dif-
ferential of displacement as

o5 =G, +ujp) + Auidy

E 20G

C =t AT =20

(28)

where E and the v are the elastic moduli and the
Poisson's ratio, respectively. The substitution of
Eq. (28) into Eq. (27) gives the expression of

stress as

oy (2') = Dt J Dy (2 v ds —
p=1 S/;

S S o) + st Al ) ds 29)

=175
where Dy; (x",x) and S (x",x) are the quantities
associated with the fundamental solutions given in
Appendix.

The solution procedures can be described as
below ;

(1) Given the geometrical and material infor-
mation of RVE, use Eqgs. (15— 17) to construct
H}, .G}, and Bj.

(2) Given global strain ;, . substitute Hj,,
i » Bi, and periodic conditions presented by
Egs. (4—5) into Eq. (14) to obtain the boundary

fluctuating displacement «} and the boundary

traction #£. The relation between uf and ;,v can be
expressed by Eq. (21).

(3) By using Eq. (24), the global elastic pyr-
amids are calculated.

(4) By using Eqgs. (27—29) the displacement
and stress can be calculated.

It can be seen clearly that the above proce-
dure does not need an iteration process to obtain
the solution of the displacement in micro level,
which is different from the asymptotic homogeni-

zation theory based multi-scale BEM.

2 NUMERICAL RESULTS AND
DISCUSSION

2.1 Case of material with periodic hole

To assess the accuracy of the proposed BEM
based multi-scale method, a numerical example
for the porous material is presented in this sec-
tion. The stresses predicted by the presented
method are compared with the results of the FEM
based multi-scale method and the analytical result
near the hole.

Considering a porous material with a large

number of holes distributed periodically, the dis-
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tance between the holes nearby is 50 pm. Thus,
we can use the area highlighted by broken line in
Fig. 3 which is the minimum unit of the micro-
structure as RVE. The edges of the square RVE
is 50 pm,

Minimum repeating unit cell used as RVE

Macroscopic level Macroscopic level

Fig. 3 Microstructure of porous material and size of RVE

The finite element based homogenization
method is used to generate reference solutions.
The meshes for both methods are illustrated in
Fig. 4. There are a total of 400 linear quadrilater-
al elements and 880 nodes for FEM based homog-
enization method, and a total of 60 constant
boundary elements for the BEM based multi-scale
method. The elastic moduli and Poisson’s ratio
for the solid part of porous material denoted in
Fig. 4 are 70 GPa and 0. 2, respectively.

Boundary element
Hole

N
.
(a) Mesh for BEM based

multi-scale method

(b) Mesh for FEM based
multi-scale method

Fig. 4 Boundary element discretization and finite ele-

ment discretization for RVE

Comparisons are made for the value of com-
ponents of effective elastic moduli under the plane
strain constraint. The effective elastic moduli are
defined by the relationship between macroscopic

stress and strain as presented by

011 611 612 0 €11
0 22 Q Qe 0 * e 30)
;12 0 0 623 ;12

Because of the symmetry of material, we on-
ly need to evaluate 611 and 623 by using the FEM
based homogenization method and the proposed
BEM based homogenization method. The values
of the effective elastic moduli for ten cases with
difference radiuses of holes are illustrated in
Fig. 5. The results indicate that the homogeneous
elastic moduli computed by both methods are in a
very good agreement. Therefore, it can be con-
cluded that the straightforward multi-scale BEM
method gives accurate estimations of the homoge-

nous elastic moduli.
80 4

Homogeneous elastic moduli / GPa
N
)

(=]

0 5 10 15 20 25
Radius of hole / um

Fig. 5 Comparisons of effective elastic constants ob-
tained by BEM and FEM

As indicated previously, the micro-stress
field is more important than the homogenous e-
lastic moduli for many applications. Then the a-
bility of the multi-scale BEM to predict the micro-
stress field is proved by comparing the micro-
stress field estimation by the proposed method
with the result predicted by FEM based multi-
scale method. Fig. 6 presents the distribution of
micro-stress at the applied macroscopic strain of
0.1 along the x, direction. It is seen that except
022 » the distribution and the maximum value of
the micro-stress predicted by both methods are in
a very good agreement.,

In fact, the numerical example presented
here can be considered as a classical problem in
which a large plane with a hole loaded by distrib-
uted force Q, and Q, (Fig. 7). Due to the charac-
ters of structure and load, the stresses ¢1; and o2,
are distributed symmetrically along X', and X',
directions, respectively, while the shear stress o,

is distributed symmetrically about the center of
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Fig. 6 Comparisons for micro-stress fields obtained by BEM and FEM
0, where the coefficients Q, and Q, are respectively
equal to the values of ¢;; and ¢, far away from the
hole and can be previously calculated by BEM or
FEM based multi-scale method. In this case Q, =
7.455 GPa, Q, = 2.57 GPa. Then the stress
0, along X', and X', axes predicted by analytical for-

[0

Fig. 7 Illustration of large plane with hole loaded by
distributed force Q, and Q,

the hole. Therefore, the stress concentration will
be limited within the area near the hole. Accord-
ing to the formulation of Kirsch G, the stress
near the hole is expressed as

b =0t -R),

wcoszso(l —Iri> (1- 352) (31)

Q1+Qz(1+R2)

O¢ —
Q& ;Q2cosz¢<1+3&4> (32)
e
(33)

mulation are compared with the corresponding re-
sults predicted by FEM based and BEM based
multi-scale methods (Fig. 8). Fig. 8 implies that
the stresses predicted by FEM based multi-scale
method agree well with the analytical results,
while the stresses predicted by FEM based multi-
scale method are quite different from those of the
other two methods near the hole. This proves the
improved accuracy of BEM based multi-scale
method in stress concentration problems.
Through the numerical example presented in
this section, we can conclude that the proposed
boundary element based multi-scale method is
quite accurate for estimating both the homogene-

ous elastic moduli and the micro-stress filed.
2.2 Case of material with random hole

In order to compare the ability of BEM based
multi-scale method with that of FEM based one,

RVEs including large number of holes distributed
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Fig. 8 Comparison of stress predicted by different methods

randomly are considered. Indeed, the random
distribution will destroy the periodic assumption
of the multi-scale method, but by using a variable
size RVE technology™® which is used by many re-
searches, an appropriate size of RVE can be found
which will give the approximate solution of elastic
properties of material. In this paper, we will not
discuss that the appropriate size of RVE can be
defined by variable size RVE technology, but on-
ly pay attention to the ability of the multi-scale
BEM developed here to deal with complicated
structure.

Fig. 9 shows one of the total 100 samples and
the corresponding meshes for BEM based multi-
scale method and FEM based one. The elastic
moduli and Poisson's ratio for solid part of mate-
rial are 70 GPa and 0. 2, respectively. We can see
that the FEM based method need meshes

throughout the body. It is difficult to obtain qual-

(c) Meshes for FEM based multi-scale method

Fig. 9 Illustration of sample and meshes

ity meshes for complicated structure. In some ca-
ses, the meshes are singular. In the case of BEM
based method, only the meshes on boundary are
needed, thus it is more convenient for BEM than
FEM to construct the mesh.

Fig. 10 shows the value of 611 for all the
samples. The results implies that the distribution
of 611 obtained from the BEM based method pro-
posed here is close to the result from the FEM
based method. Fig. 10 also shows the time for
BEM based multi-scale method developed here
and the FEM based one to calculate the effective
elastic properties of all 100 samples. It implies
that the BEM based method takes less time than
the FEM based method.
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