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Abstract : Attribute reduction is an important process in rough set theory. Finding minimum attribute reduction has

been proven to help the user-oriented make better knowledge discovery in some cases. In this paper, an efficient

minimum attribute reduction algorithm is proposed based on the multilevel evolutionary tree with self-adaptive sub-

populations. A model of multilevel evolutionary tree with self-adaptive subpopulations is constructed, and interac-

ting attribute sets are better decomposed into subsets by the self-adaptive mechanism of elitist populations. Moreo-

ver it can self-adapt the subpopulation sizes according to the historical performance record so that interacting attrib-

ute decision variables are captured into the same grouped subpopulation, which will be extended to better perform-

ance in both quality of solution and competitive computation complexity for minimum attribute reduction. The con-

ducted experiments show the proposed algorithm is better on both efficiency and accuracy of minimum attribute re-

duction than some representative algorithms. Finally the proposed algorithm is applied to magnetic resonance im-

age (MRI) segmentation, and its stronger applicability is further demonstrated by the effective and robust segmen-

tation results,
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cision variable; magnetic resonance image (MRI) segmentation
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INTRODUCTION

Attribute reduction is one of the important
topics of rough set theory, which helps us to find
out the minimum attribute set and induce mini-

mum length of decision rules inherent in an infor-

]

mation system™”. It has gained considerable im-

portance, with numerous applications in diverse
areas of research, especially in data mining,

knowledge discovery, and artificial intelli-

[2-3]

gence Therefore a fast and efficient attribute

reduction algorithm is especially important for
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huge data sets. However, the problem of finding
the minimum attribute reduction set is more diffi-
cult and has been proven to be an NP-hard prob-
lem by Wong and Ziarko™. The high complexity
of this problem has motivated a few investigators
to apply some heuristic evolutionary algorithms

L7 But clas-

(EA) to find near-optimal solutions
sical EA (e. g. genetic algorithm (GA), ant colo-
ny optimization (ACQO), particle swarm optimiza-
tion (PSO), and shuffled frog-leaping algorithm
(SFLA)) often suffers from premature conver-

gence because of the loss of population diversity
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at the early stage. Moreover, each performance
deteriorates rapidly as the increasing complexity
and dimensionality of the search space so that
thousands of seconds may be required to deal with
it. The experimental results of these evolutionary
algorithms still can not satisfy the attribute re-
duction of large-scale complex attribute sets.
Therefore these algorithms are usually not quite
effective in the sense that the probability for them
to find the minimum attribute reduction in a large
information system appears to be lower.

Cooperative co-evolutionary algorithm
(CCEA) introduced by Potter and De Jong'™ is a
natural model by a divide-and-conquer approach,
which divides the complex swarm into subpopula-
tions of smaller size and each of these subpopula-
tions is optimized with a separate EA. Coopera-
tive co-evolution guides evolution towards the dis-
covery of increasingly adaptive behaviors, in
which each subpopulation’s fitness is determined
by how well it works with the other subpopula-
tions in producing a complete object. Therefore it
has its potential application importance for main-
taining diversity and mutual adaptation amongst
subpopulations. The concept of evolving subcom-
ponents of a problem independently and co-adap-
tively sounds natural and attractive, which fur-
ther enlightens us to study some efficient co-evo-
lutionary algorithms, especially for the NP-hard
solution.

As we all know the critical step of CCEA is
the problem decomposition. An ideal CCEA
should decompose a large problem into subcom-
ponents where the interdependencies of decision
variables among different subcomponents are
minimal. But there is almost no prior information
about how different decision variables are interac-
ting. It turns out there would be a major decline
in the overall performance of traditional CCEA,
when the tight interactions exist among different
attribute decision variables. Therefore in the re-
cent years some effective algorithms and frame-
works for decompositions of variable interdepend-
encies have been proposed: DECCG relies on

random grouping of decision variables into sub-

components in order to increase the probability of
grouping interacting variables. MLCCM" which
extends DECCG employs both a random grouping
scheme and adaptive weighting technology for de-
composition and co-adaptation of subcomponents.
CCEAAVP!Y partitions the non-separable varia-
bles into subpopulations based on the observed
correlation matrix and does not require some prio-
ri partition rules. DECCDM* divides population
into predetermined equally-sized subpopulations
according to their corresponding delta values.
DECCDMLM® which is the variant of DECCD
uses a new uniform selection for self-adapting
subcomponent sizes along with more frequently
random grouping. During tackling the crucial
problem decomposition issue, the algorithms may
allow for capturing the interacting attribute deci-
sion variables and group them in one single sub-
population, but the decomposition strategy often
depends on the interacting of problems and thus
becomes hard to choose. Therefore the self-adap-
tation of co-evolving subcomponents is difficult to
achieve successfully.

The purpose of this paper is to investigate an
efficient minimum attribute reduction algorithm
(called METAR) based on multilevel evolution-
ary tree with self-adaptive subpopulations. A
model with hierarchical self-adaptive evolutionary
tree is designed to divide attribute sets into sub-
sets with the self-adaptive mechanism according
to their historical performance record. Since this
model can help to produce the reasonable decom-
positions by exploiting any correlation and inter-
dependency between interacting attribute subsets,
the proposed algorithm can self-adapt the subpop-
ulation sizes and capture the interacting attribute
decision variables in order to group them together
in one subpopulation. Each of these subpopula-
tions is optimized with a separate EA. Extensive
computational studies are carried out to evaluate
the performance of the proposed algorithm on a
large number of benchmark functions, UCI data-
sets and magnetic resonance images (MRI). The
simulation result shows the proposed algorithm

has superior performance for minimum attribute
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reduction.

1 RELATED DEFINITIONS

In rough set theory, an information system,
which is also called a decision table, is defined as
S=(WU,A,V,f), where U, called universe, is a
nonempty set of finite objects; A=CU D where C
is the set of condition attributes and D the set of
decision attributes; V is a set of values of attrib-
utes in A and f:A—V a description function"**.
Definition 1 For any R< C, there is an
equivalence relation I(R) as follows

I(R)={(x,y) € U* | Ya € R, alx) =a(y)}
(D

If (x,y) € I(R), then x and y are indiscerni-
ble by attributes from R. The equivalence classes
of the R-indiscernibility equivalence relation I(R)
are denoted as [ x |z.

Definition 2 Let XCU, R be binary equiva-
lence relation defined on a universal set U, so RX
can be defined as the union of all equivalence clas-
ses in X/R that are contained in X, such as

BXZ{JT\JCGU,[I]RQX} (2)

RX can be also defined as the union of all
equivalence classes in X/R that overlap with X
like the following equation

RX={z|lxeUlals N X#® (3

Rough set RX can be represented with the
given set X as RX=(RX JRX).

Definition 3 The C-positive region of D is
the set of all objects from the universe U which
can be classified with certainty into classes of U/

D employing attributes from C, that is
POS.(D)= | CX €)

XeU/D —

Definition 4  The degree of dependency
vp (D) is used as a criterion for the attribute se-
lection as well as a stop condition, defined as fol-

lows

[ POS,(D) |
1ol

A given decision table may

yr (D) = 6!

Definition 5
have many attribute reductions, and the set of all
reductions is defined as

Red={RZC C | yx (D) =y:(D),
VBCR,ys(D) ## y(D)} (6)

The goal of attribute reduction is to find a re-
duction with minimum cardinality. An attempt is
made to locate a single element of the minimum
reduction set

Red,.,, =

{RE€Red |V R €Red, | RI<|IR |} (D
The intersection of all reductions is called the
core, the elements of which are those attributes
that cannot be eliminated. The core is defined as

Core(C) =1 Red (€D

2 ATTRIBUTE REDUCTION BASED
ON MULTILEVEL EVOLUTION-
ARY TREE

2.1 Framework of multilevel evolutionary tree

A novel multilevel evolutionary tree model is
proposed to decompose interacting decision varia-
bles of attribute sets into self-adaptive subpopula-
tions in this section. This evolutionary tree can
self-adapt the subpopulation sizes among its dif-
ferent sub-trees, and it can be better used to cap-
ture the interacting attribute decision variables
and help to produce the better satisfactory reason-
able decompositions by exploiting some correla-
tion and interdependency between interacting at-
tributes subsets. The main framework of multi-
level self-adaptive evolutionary tree is designed as
Fig. 1.

Initially, all evolutionary individuals are ar-
ranged in the nodes of an original multilevel evo-
lutionary tree so that each node of tree contains
exactly one evolutionary individual. Each inner
branch is looked as an evolutionary subpopulation
which is only demanded to have the same number
of nodes. The evolutionary tree is defined by the
height 2, the branching degree d;, (i. e., the
number of children of each sub-tree), and the to-
tal number of nodes m of the tree. For example,
in Fig. 1(a), h=3, D={d,, d;, d;}={4,4.,4},
m=16 and in Fig. 1(b), h=4, D={d,, d,, d )

=1{6,3,3}, m=16. The tree contains two types
of entities. One is ordinary individuals, denoted by

white dots, which are the basic independent individu-

als. There is no cooperation mechanism but competi-
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Fig.1 Framework of multilevel self-adaptive evolutionary tree model

tion mechanism among them. The other is the elitist
individuals represented by black dots, which are the
best children nodes. Each branch of the tree is repre-
sented as a subpopulation highlighted as broken line
in Fig. 1 (a).

In order to give the elitist in the respective
subpopulation a high influence, individuals will
be compared by their fitness in the evolutionary
tree. In every iteration, every Parent,; in Subpop-
ulation; of the tree is compared with the best chil-
dren node Children? (namely Elitist;) found in
If 7 (Elitist;) <
f(Parent;), the elitist node of this sub-tree will

all individuals of sub-tree.

be moved to the next lower level in Fig. 1(b).
These comparisons are performed starting from
the top of the evolutionary tree and then proceed-
ing in a breadth-first manner down each level of
evolutionary tree. Through this run, the degree
of left branching d; is gradually increased, but the
degree of right branching d; is slowly decreased.

This evolutionary tree is traversed starting from

the root node. The selected elitists of each sub-
population will be evenly appended one by one at
the bottom from the left sub-tree to right one.
The procedure is continued until all elitists in the
penultimate level are reinserted. As the result,
new different subpopulations are reformed. The
d; will be a set used as the decomposed size of at-
tribute sets in which the number descends, and
left subpopulation contains more elitists which
enhance the global optimization performance. For
example, in the self-adaptive multilevel evolu-
tionary tree of Fig. 1(b), the new branching de-
gree size of each subpopulation is the set D= {6,
3.3).

Only individuals originally exist in the evolu-
tionary tree. Elitist individuals and decomposition
subpopulations are created dynamically by the
mechanisms of self-adaptive competitive and co-
operative co-evolution. When the competitive co-
evolution is applied, individuals on all levels of a

sub-tree, if any, are mixed together, and two
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kinds of entities, ordinary individuals or elitist in-
dividual, are partitioned by the proportion of fit-
ness to form a new subpopulation. When the co-
operative co-evolution is applied, selected elitist
of each subpopulation shares its ability of better
decomposition experience with two nearest elitists
of subpopulations. Then different subpopulations
will evolve through their respective elitists as to
strengthen the sharing ability of their better de-
composition experience for interacting attributes
subsets. This process is described in Fig. 1 (a).

During the repeated procedure of multilevel
evolutionary tree, this strategy of removing the
best elitists of subpopulations is proved to provide
better results. The reason why it is better to re-
move with the best node could be that the re-
moved elitists will be appended to the bottom of
the evolutionary tree and have good chances to
share their better ability of decomposition experi-
ence for interacting attribute subsets, which is
contributed to the elitists search process. In spite
of the dynamic multilevel of the evolutionary
tree, the new formed sub-trees concentrate the
search on different regions of the attribute sub-
sets, so that it achieves the better performance of
coordinating exploration and exploitation.

The advantage of multilevel evolutionary tree
is to automatically decide to select the elitists, be-
cause selection is driven by the fitness of individu-
als on subpopulations, and they have been self-a-
dapted from low level to high level. Thus, a part
of left evolutionary sub-trees develop to the most
appropriate level and contain most elitists. As a
result, superior performance of initial decom-
posed subpopulations can be used to exploit the
correlation and interdependency between interac-
ting attribute subsets, and the balance between
the effectiveness and efficiency of the search-opti-

mizing is better achieved.

2.2  Minimum attribute reduction optimization

model

A reduction with minimum cardinality is
called minimum attribute reduction. It can be for-
mulated as a nonlinearly constrained optimization
model as follows.

Let {0, 1} be the m-dimensional Boolean

space and & a mapping from {0,1}” to the power
set 2¢ such that
x;, =15a; € &(x) i=1,ym,a € C (9
Then, Eq. (7) can be reformulated as the follow-
ing constrained binary optimization model
F(x) = minS(x)
x € (0,1}
s. t. Vw (D) =vyc(D) (10)

Vg€ &x)s Yeoniw (D) = ¥en (D)

m

where 0<CS(x) = > x,<m.

i=1
'9~r/n}e {O’l}m’

if it is a feasible solution to Eq. (6), its corre-

Given a vector x={x; , 25"

sponding subset of attributes £(x) is a reduction.
Furthermore, if it is an optimal solution to
Eq. (10), then £(x) is a minimum attribute re-

duction.
2.3 Proposed METAR algorithm

According to the model of attribute reduction
and the framework of multilevel evolutionary
tree, METAR is presented and its flowchart is
described in Fig. 2. A decomposer of attribute
sets is selected from the subpopulations based on
the above multilevel evolutionary tree. As consid-
ering the superiorities of quantum-behaved evolu-
tionary algorithms, here we prefer using the QP-
SO™J as the attribute sets optimizer. With such a
mechanism, the METAR algorithm is self-adap-
tive to capture the interacting attribute decision
variables and group them together in one subpop-
ulation. Therefore it will be extended to better
performance in both quality of solution and com-
petitive computation complexity for minimum at-
tribute reduction.

The main key steps of the METAR algo-
rithm are summarized as follows:

Input: An information system T =
(U,CUD,V, f), the set C of condition attributes
consists of m attributes, and other relative pa-
rameters.
Output; Minimum attribute reduction Red,,,.
Step 1

attribute reduction sets by using the discrimina-

Compute attribute core Core(D) of
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Fig. 2 Flowchart of METAR algorithm

tion matrix. If yx(D)=7vy,(D), then Core(D) is
the minimum attribute reduction set, Red,; <
Core(D), else go to Step 2.

Step 2 Ensure Core(D)#RED,,, according to
Step 1. Because Core(D) € Red, Core(D) is not in-
volved the searching optimization, the dimension of
attribute sets is H=|D|— |Core(D) |.

Step 3  Calculate the weight of each attrib-
ute ¢; by the formula: Weight;, = Feoretor—q,

Step 4

corresponding node of multilevel evolutionary

Veore(e) »

Map each condition attribute into

tree, and limit the domain for each node into the
defined reduction space [0, 1] by the following

Weight, — Weight,,
Weight,,.., — Weight,”

Let {0,1}" be the m-dimensional

formula: Weight; =

Step §
Boolean space and & a mapping from {0,1}" to the
power set 2€ as x;,=19a, € &(x). (0, €C,i=1,2,
-«=,m) in order to fit for the optimization model
(i.e. Eq. (10)).

Step 6
D={d,,d,, -

Construct a set of population sizes
. d,} by self-adaptive co-popula-
tions with multilevel evolutionary tree.

Step 7 Create a performance record list R=
{risrys==sr,}. Each d, € D is connected to r; € R.

Here r; is set to 1 initially, and will be updated

according to

where f) is the Elitisti’s fitness of this subpopula-
tion and f,, the worst fitness.
Step 8 Compute the decomposer probabili-
ties in the decomposer set as follows
P={pispzs=spiy

762R X r;

pi=—

e’i

P will provide a rather high probability to select

i:{lyza'“vt}

the decomposer with the best performance in the
multilevel evolutionary tree.
Step 9

m X (Sub_ attribute),; based on the group size s;

Decompose the attribute sets into

according to the better decomposer probability
bi.

Step 10 Set G={g,.g>+***»g, ) and each
g; represents a subcomponent of the decomposed
attribute subset.

Step 11 For each decomposed attribute sub-
set (Sub_ attribute);, perform following steps:

(1) Evolve attribute reduction subset Sub
Red; by the best elitist individual of each decom-
posed subpopulation.

(2) Optimize each subcomponent g; with
subpopulation by QPSO for a predefined number
of FEs.

(3) Choose best attribute reduction subset
R (RY* C Sub_ Red;) in each decomposed at-
tribute subset, respectively.

(4) Compare fitness of R,

Step 12 Evaluate each decomposed subpop-
ulation of attribute reduction.

Step 13 Collaborate to form complete solu-
tion and achieve Red,;, =min{R"™"}.

Step 14 If the halting criterion is satisfied,
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output the global minimum reduction Red,;,, else

go to Step 6.

3 EXPERIMENTAL RESULTS AND
ANALYSIS

In order to illustrate the effectiveness and ef-
ficiency of the proposed METAR algorithm,
some experiments on various datasets are carried
on, with different numbers of attribute sets.
Here all experimental algorithms are encoded in
Java and conducted on a PC with Intel (R) Core
(TM) 2,2.93 GHz, CPU Duo and 2 GB RAM.
Extensive computational studies are carried on to
evaluate the performance of the METAR algo-
rithm and other representative algorithms on non-
separable optimization functions, UCI datasets

and MRI, respectively.
3.1 Non-separable optimization functions

First, the METAR algorithm is evaluated on
CEC'2008 benchmark functions"'"'. Functions f,
and f; are completely non-separable in which in-
teraction exists between any two variables. Ex-
periments are conducted on 1000-Dimension of
two functions. The maximal FEs is set to 5 X
10°, population size is set to 60. Here the
METAR algorithm is compared with three repre-
sentative cooperative co-evolutionary algorithms,
namely DECCG!M, MLCCM and DECCDM#,
which are often used for the decomposition of var-
iable interdependencies. The experimental results
in Fig. 3 illustrate the evolutionary curves of best
fitness found by four algorithms, averaged for 50
runs. In order to gain a better understanding of
how different algorithms converge, the enlarged
figures of the late evolutionary curves are presen-
ted more clearly.

By comparing the evolutionary curves, it can
be seen that the MATAR algorithm is much more
effective than other three algorithms in discove-
ring and exploiting the interacting structures in-
herent for two non-separable functions f, and f;

although no prior knowledge is available. It can

8
-8.6 — METAR
6 T TS =r=: MLCC
i
488 —— DECCG
’%\D 2 90 ) ) ) R DECCD
= 750 800 850 900 %950 1 000
2 0
g
& 2
3
2 4
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-8
—_ 0 1 1 1 1 1
400 500 600 700 800 900 1000
Iteration
(a) f; function
20
-4.8 = METAR
: == MLCC
<, —— DECCG
10b77850 900 50 1000 —— DECCD

Best fitness (log)

10 . . . . A A . ,
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Iteration
(b) £, function

Fig. 3 Evolutionary process of mean best values for f,

and f; functions

capture the interacting attribute decision variables
in order to group them together in one subpopula-
tion, so it can help to produce the reasonable de-
compositions. The subpopulation contains more
elitists which enhance the global optimization per-
formance. The MATAR algorithm achieves the
significantly faster convergence and better scal-
ability for non-separable functions by the model
of multilevel evolutionary tree with self-adaptive

subpopulations.
3.2 UCI datasets

To further evaluate the effectiveness of the
MATAR algorithm for attribute reduction, ex-

periments on five selected UCI datasets-*

are per-
formed. Here average running time and accuracy
results of the MATAR algorithm are compared a-
gainst three representative attribute reduction al-
gorithms based on the evolutionary strategy, i. e.

GAAR", ACOAR", and PSOAR',

The aver-
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age results over 50 independent runs are summa-
rized in Tables 1 — 2. The best mean values
among four algorithms are marked in bold face.

Table 1 Average run time of minimum attribute reduc-

tion s
Dataset Algorithm
(Num/Class) GAAR ACOAR PSOAR MATAR
Sonar
2. L4 2.12 1.
(782/13) 03 315 65
Hepatitis .
(2410/42) 8. 69 8.52 9.19 6.37
Ionosphere
7. 46 8.32 5.24 5.28
(1215/18)
Promoters
(981/14) 9.19 8. 30 8.79 6.13

Heart-statlog

11.53  12.82 9.4 7.1
(650/9) >3 8 946 3

Table 2 Average accuracy of minimum attribute reduction

%
Dataset Algorithm
(Num/Class) ~ GAAR ACOAR PSOAR MATAR
Sonar
89.19  91.15 92.12  94.65
(782/13) 7
Hepatitis
(3110/42) 84.16 79.52 88.24  95.15
lonosphere 87.16  91.43  93.97  93.63
(1215/18) : : : .
Promoters
1 .34 .7 4.7
(9817119 90.18  86.34 85.70 94.78
Heartstatlog o7 10 g0 2 91,48 95.09

(650/9)

(d) PSOAR

(¢) SFLAAR

It is clear from the two tables that perform-
ance of MATAR is significantly better than each
of GAAR, ACOAR and PSOAR on all other
datasets except of Ionosphere datasets, in which
performance of MATAR is also nearly close to
the best result. Since the run time of each algo-
rithm is mainly determined by calculating depend-
ency degree, the number of solution constructions
is suitable as a main quantity to evaluate the
speed of these algorithms. The MATAR algo-
rithm can construct fewer solutions than three
compared algorithms and successfully find the op-
timal reduction set on these datasets. Therefore it
can rapidly get the higher accuracy of minimum

attribute reduction in the limited time.

3.3 Magnetic resonance image (MRI)

As we all know a major difficulty in the seg-
mentation of MRI is the intensity inhomogeneity
due to the radio-frequency coils or acquisition se-
quences. In the following experiment, the reduc-
tion and segmentation performance of MATAR
for MRI are evaluated with Gaussian noise level
5% and intensity non-uniformity (INU) 30% . in
separately 100 times. Each size of these images is
256 pixel X 256 pixel, and slice thickness is
1 mm. The segmentation results are shown in
Fig. 4. Fig. 4(a) is the original image, and Figs. 4
(b—1) are the results using GAAR™ , ACOAR",

(f) MATAR

Fig. 4 Comparison of segmentation results on MRI corrupted by 5% Gaussian noise and 30% INU
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PSOARM!, SFLAAR, and MATAR, respective-
ly. Here SFLAAR is the coding algorithm in
which SFLA is applied to the attribute reduction.
Note that GAAR, ACOAR and PSOAR are much
less fragmented than other algorithms and have
somewhat the disadvantage of blurring of some
details. Both MATAR and SFLLAAR can achieve
satisfactory segmentation results for MRI with
obvious intensity inhomogeneity, but compared
with the result obtained by SFLAAR, the result
of MATAR is more accurate, as shown in Fig. 4
(D.

To demonstrate the advantage of MATAR
for the segmentation of MRI clearly, Table 3
gives the average time and segmentation accuracy
(SA) of five algorithms in detail when the real
brain MRI with the same INU 30% corrupted by
5% and 8% Gaussian noise, respectively. Here
SA is defined as the sum of the total number of
pixels divided by the sum of number of correctly
classified pixels.

Table 3 Average time and SA on MRI

MRI corrupted by 5% MRI corrupted by 8%

Algorithm Gaussian noise Gaussian noise
Time/s SA/ % Time/s SA/ %
GAAR 8.32 83. 20 10. 56 82. 39
ACOAR 9.78 89. 30 14. 19 90. 39
PSOAR 8.78 90. 32 16. 90 90. 14
SFLAAR 7.34 90. 06 10. 45 91.12
MATAR 6. 65 95. 46 8.39 94. 89

It can be observed from Fig. 4 and Table 3
that the MATAR algorithm can be considered as
a more efficient algorithm to be applied to the
segmentation of complex medical MRI so as to
maintain the better global minimum attribute re-
duction. Although MRI is corrupted by different
Gaussian noises, the MATAR algorithm can
achieve higher segmentation accuracy and speed
with the more obvious advantages than the other
four algorithms. Therefore there are overwhelm-
ing evidences to support more excellent feasibility
and effectiveness of the proposed MATAR algo-
rithm for minimum attribute reduction, especially

for interacting attribute decision variables.

4 CONCLUSION

Aiming at the difficulty in the variable inter-
dependencies and the premature convergence in
traditional EA used for minimum attribute reduc-
tion, an efficient algorithm, MATAR, is pro-
posed based on multilevel evolutionary tree with
self-adaptive co-populations. A model with hier-
archical self-adaptive evolutionary tree model is
designed to divide attribute sets into subsets with
the self-adaptive mechanism according to their
historical performance record. It can capture the
interacting attribute decision variables so as to
group them together in one subpopulation. The
experimental results demonstrate the proposed
MATAR

some existing representative algorithms. There-

algorithm remarkably outperforms

fore it is a much more effective and robust algo-
rithm for interacting attribute reduction.

The future work will focus on the more in-
depth theoretically analysis of the MATAR algo-
rithm and its relation to incomplete attribute re-
duction characteristics of 3D MRI segmentation
by better self-adaptively coping with local and

global intensity inhomogeneity simultaneously.
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