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ACTIVE VIBRATION CONTROL OF TWO-BEAM STRUCTURES
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Abstract: The wave propagation approach is presented to research the active vibration control of two-beam struc-

tures. Considering the continuity of the generalized displacement and the equilibrium of the generalized force at the

discontinuity, the wave reflection and transmission coefficients are calculated. Wave control is applied somewhere

upstream or downstream to two-beam structures. Vibrations of two coupled beams per unit disturbance are investi-

gated. The results show that wave control is efficient, and the influence of the thickness ratio of two-beam struc-

tures on control location is discussed.
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INTRODUCTION

Two-beam structures are commonly used as
elements in the construction of many practical en-
gineering structures such as spacecraft and large
space structures. All these structures have flexi-
ble extensions which are made as light and slen-
der as possible. Such slender elements lack the
necessary damping properties of being able to
function effectively under dynamic loads. In order
to damp out excessive vibrations and improve the
performance of structures, conventional approa-
ches of additional passive damping treatments are
not often implemented on these systems because
of weights or other constraints. Therefore there
has been an increasing interest in active vibration
control™*. In active vibration control, desirable
performance characteristics are achieved through
the application of control forces to a structure.

Vibrations can be described in a number of
ways, with the most common descriptions in
terms of modes and wave motion. In modal active
vibration control, the aim is to control the charac-
teristics of the modes of vibration, i. e., their

damping factors, natural frequencies or mode
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shapes. Modal control aims to control the global
behavior of the structure, whereas wave control
aims to control the flow of vibration energy
through the structure. Wave designs are based on
the local properties of the structure, and are in-
herently much less sensitive to system properties
and more robust than global models of struc-

% In a continuous structure, vibrations

tures
can alternatively be regarded as the superposition
of waves traveling through the structure. These
waves are reflected and transmitted at the struc-
tural discontinuities. Active wave control aims to
control the distribution of energy in the structure
by either reducing the transmission of waves from
one part of the structure to another or absorbing
the energy carried by the waves. Here the dis-
turbance is detected, and a control force is used
somewhere upstream or downstream to absorb
the energy associated with the propagating wave.

Physical modes of flexural wave propagation
in beam or plate are developed in order to imple-
ment wave control. Gardonio and Elliott con-
trolled a one-dimensional structure with a scatter-

ing termination by means of active control of
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waves- . Brennan described an analytical and ex-
perimental investigation into the use of a tunable
vibration neutralizer to control the transmission
of flexural propagating waves on an infinite

[8]

beam Mei, et al studied hybrid wave/mode ac-

tive vibration control of an FEuler-Bernoulli
beam'™. Carvalho and Zindeluk modeled and
tackled active control of waves in a Timoshenko

beam-.

Halkyard and Mace analyzed adaptive
control of flexural vibration in a beam using wave
amplitudes’'®. EL-Khatib, et al concerned with
the control of flexural waves in a beam using a
tuned vibration absorber™’. Hu, et al studied vi-
bration control of Timoshenko beam based on hy-
brid wave/mode method, and compared wave

lFlﬂ

control with modal contro Chen, et al inves-

tigated wave control of a cantilevered Mindlin-

]

type plate®™. Some authors, like Mace and

Mead, dedicated their efforts to the wave reflec-
tion mechanism """,

In previous investigations, wave control only
has been used to control the wave motion in a

6121 Less frequently, the wave

beam or plate
control of two-beam structures has been investi-
gated. Although Svensson, et al theoretically
studied the wave scattering and the active modifi-
cation of wave scattering at structural junc-

5] wave control has not been investigated.

tions
In the present work, a cantilever structure is
modeled as two-beam structures. Wave-control
approach is applied to the structures. In the two-
beam structures, the incident propagating wave is
reflected and transmitted at the beam junction and
control  location. Proportional-plus-derivative
(PD) feedback wave control is implemented.
This paper presents a theoretical investiga-
tion using active control to attenuate the respon-
ses associated with two-beam structures. Based
on the substructure synthesis method and Hamil-
ton theory, motion equations of the structures are
given in terms of the modal coordinates. And
wave-control approach is used to absorb vibration
energy. In particular, if the beam material is the
same on both sides of the beam junction, wave

reflection and transmission coefficients at control

location are determined by the thickness ratio of
the structures. At last, numerical examples are
given, and numerical results show the influences
of the thickness ratio of two-beam structures on

wave control.

1 MOTION EQUATIONS OF COU-
PLED BEAM STRUCTURE

The general form of the structures consid-
ered in this paper is illustrated in Fig. 1. Two u-
niform beams are joined rigidly along a common
edge. Using the substructure synthesis method, a

cantilever beam and a free-free beam are coupled,

as shown in Fig. 2.

= —,

Fig. 1 Cantilever structure of coupled beam

(a) Cantilever beam (b) Free-free beam

Fig. 2 Cantilever and free-free beams

In the absence of damping, the motion equa-
tion of single uniform Euler-Bernoulli beam with
constant cross-section may be written in the form

ayl'LU(kT,‘ al)

(ED, Z00 4 (o), I wlxit)

pY = f(x;,t)
(D
where w(x,,t) and w(ax,,t) are the transversal
deflection of the first beam and the second beam,
respectively, f(x,,¢) and f(x,,t) the external
disturbance of the first beam and the second
beam, respectively, E denotes the Young's mod-
ulus, I the area moment of inertia, p the density,
A the cross-sectional area.
The bending moment M and shear force Q
transmitted through an arbitrary section of the

beam may be expressed as

aZ Tis (73 Ny
M=—(ED), M’ Q=—(ED), M
ax; (71’,-\

(2
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Using assumed mode method, the displace-
ment of the beam 1 and beam 2 can be discretized
as

w(x,.0) =0 (x)q(1), wla,,t) =¥ (x,)p(t)
3
where @ (x,) and ¥ (x,) represent the mode
functions of transverse vibrations of beam 1 and
beam 2, respectively, q(z) and p(z) the modal
coordinates of transverse vibrations of beam 1 and

beam 2, respectively. The quantities are given by

@ (x) =L (x1) ¢ (x1) o, (x1) ]
q()=[q. (1) q. () . (] 4
T (x) =L () ¢ (ay) G (2D ]
p()=[p () p, (D) pa(]T (5

The kinetic energy of the beam 1 can be ex-
pressed as

dw(x; 1)

o 1 L
Tl_?Jo(pA)l[ dt

2 1.4 .
J dxl :iqlMlq
2
(6
L
where M= [ (pA), @7 (e () das (), is
0

the mass per unit length of the beam 1, ¢ the first
derivative with respect to ¢z, and L the length of
the beam 1 and beam 2. Here, the mode shapes

are assumed to be mass-normalized such that
L
j (‘OA)]QD{(.T])gDJ(J']>dl'] :8,1 l.yj:l,29"'
0

P
The potential energy of the beam 1 can be
written as

QZW(IL 7f)

ii k ’ 7i T

®
L
Where KIZJ (EI)1 @”T(Il)@”<1'])d1']a (EI)]

is the flexural rigidity of the beam 2, and ®”(z,)
the second partial derivatives with respect to x,.

The kinetic energy of the beam 2 is given by
TZ -

. y = p 2
1J1 (pA)Z[Q(u(II L,t)‘Fw(Iz,z‘,))J day =

? 0 Jdt
S Mp M )

L
where M, = [ (pA), 7 (2) ¥ () das

0

L
M, — J (oA)y ® (DT () dxs » and (oA, is the

mass per unit length of the beam 2. Here, the
mode shapes are assumed to be mass-normalized

such that
"L
J (IOA)Z(/J,(Iz)S[JJ(Tg)dIZ :60 i’j:1,29°'°
0

QL))
The potential energy of the beam 2 is ex-

pressed as

L 32 INTo 2
Vz:%J (EI)Z[M} de, — &
0

dxh ?pTsz
(1D
L
where K, =J (ED, w"" (2) " () ds s and
0

(ED, is the flexural rigidity of the beam 2.
Therefore, the kinetic energy of two-beam

structures can be written as

1t -7 M, M; q
zl p]{Ms Mj u

12

The potential energy of the structures is ex-

T1:T1+T2:

pressed as
oy [
V=V, +V,==[¢" p"]
2 0 K,||p
(13)

Substructure synthesis is a method whereby
a structure is regarded as an assemblage of sub-
structures, each of which is modeled separately
and made to act as a single structure by imposing
certain geometric compatibility at boundaries be-
tween two adjacent substructures’'®. Therefore,
using the substructure synthesis method, the
coupled structure is regarded as a cantilever beam
and a free-free beam, and applying continuity and
equilibrium of the beam junction, dependent mo-
dal coordinates [ q" p" ] of substructures can be
transformed the independent modal coordinates of
the coupled structure.

Since the displacement and slope are continu-
ous, furthermore, by considering the equilibrium
of the beam junction, constraint equations can be
written as
w(x, =L,t) =w,(x;, =0,1)
dwlx, =L,t)  Jdw,(x;, =0,1)

dx, o dx,
2wz, =L,t) 2wz, =0,1)

dx,? dx,’

(14)

(ED), =(ED,
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Pwlx, =L.,t)
(")fl‘l3

adw(l‘z :Oal>
(")1'23

(ED), =(ED,

(15)
From Eqgs. (14 —15), the following can be

HEH S

where I is the identical matrix, matrix G can be

obtained.

determined by Eqgs. (14—15), and z=[z, =z,
2, ]7 represents modal coordinates of transverse

vibrations of two-beam structures.

Substituting Eq. (16) into Egs. (12—13), we

have
T, = Li"M; V:%zTKz an
. Ml M% = 1 0
where M = B B. K =B" B.
G
and B = .
1

According to the Clapeyron Principle, the
work done by the external load can be expressed

as
1, L,
W. Z?]‘(Il D wl(ay +t) +?f(1”2 o0 (wla, =

L.,t) +wlx,,0)) =F" ()Bz (18)
where F" (1) =
[f(l] 9[)@(11 )+f(12 9[)@ (L)
f(fz 71‘)11, (Ig)] ’ =1 ’2.
Using the Hamilton theory Jl/ T, — 8V +

0

oW dt =0, the equations of motion for two-beam
structures can be obtained

Mz +Kz =B'F a9

Obviously, the natural frequencies of the

structures can be determined by M and K.

2 FEEDBACK WAVE CONTROL

Vibrations can be regarded as the supersti-
tion of the waves traveling through the structure.
In this paper, collocated force/sensor negative
feedback control is assumed to be applied. In the
frequency domain, the wave-control force is given
by

Flw) =—H.,(w)w(w) 20)
where H, (w) is frequency-dependent and com-

[5]

plex”’. Note that the amplitudes of any incident

near-field waves are neglected.

A propagating wave is incident on the discon-
tinuity and gives rise to reflected and transmitted
waves. In order to determin H,(w), the wave re-
flection and transmission coefficients at point dis-

continuities are needed to be calculated.

2.1 Wave transmission and reflection at beam

junction

If a concentrated harmonic load is applied, at
any point, to the beam, four free flexural waves
will emanate from this point.

w(x;) =Aexp(—ik,x;) + Apexp(ikx;) +

Agexp(— k) + Ayexplkx;) 2D
where £, = m (i=1,2) are the
wavenumbers of elastic wave, exp (ikx;) and
exp(—ik;x;) the propagating and energy-carrying
waves, whereas exp (— kx;) and exp(k,x;) the
near-field waves carrying no energy, A, (j=1, 2,
3, 4) satisfying the boundary condition are the
mode coefficients. The aim of the wave control is
to absorb the energy associated with the propaga-
ting waves.

Let two beams differed by wave-number and
bending stiffness be joined at x; =0. A positive-
propagating wave is incident on the beam junction
and gives rise to reflected and transmitted propa-

gating and near-field waves, as shown in Fig. 3.

Incident wave ———— Transmitted wave

Reflected wave <+——

r
‘» 1

————————————————————— Ry R

1 X

Fig. 3 Reflection and transmission of waves

at beam junction

The displacement of the beam w_ (x3) and
w; (x3) in the regions x3<C0 and x5 =0 are given
by
w_ (x3) =a’ exp(— ik x;) +a exp(ik xs) +

avexp(k,xs) (22a)
w4 (T5 ) :])+ CXp(_ 1kgl‘5 ) + ])]t] CXp<_ kg]‘g)
(22b)

where the time dependence exp(iwt)has been sup-
pressed, a* denotes the wave amplitude of inci-
dent propagating waves, a the wave amplitude

of reflected propagating waves, ay the wave am-
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plitude of reflected near-field waves, 6" the wave
amplitude of transmitted propagating waves, and
by the wave amplitude of transmitted near-field
waves. The subscripts 1 and 2 refer to the inci-
dent and transmitted sides of the junction, re-
spectively.

Since the displacement, slope, bending mo-

ment and shear force are all continuous at the

junctiont™®, we have
w_ (0) =w,; (0) ¢ (0) =¢, (0) (23a)
M- (0) =M, (D) Q. (0) =Q- (0) (23b)
where sign "—" and "4" denote the corresponding

mechanical quantity in the regions x;<C0 and x; >
0, respectively.

Substituting Eq. (22) into Eq. (23), the re-
flection and transmission coefficients can be ex-
pressed as

H=40+ 1 +p/((1+)*(1+p*—

(1+HA =5 (242)
r=(4 — DR 2ia(1 — ) /((1+
P+ — U +aHA =% (24b)
where a=*k,/k, and 3= (EIK"),/(EIK), repre-
sent the ratios of wave-number and bending wave
impedance, ¢, and ¢, the transmission coeffi-
cients, and r; and r, the reflection coefficients.

If the material is the same on both sides of
the beam junction, we have

a=c ", pB=d (25)
where ¢=h,/h, denotes the thickness ratio of two
beams.

For an incident propagating wave, the power
carried in a propagating wave is proportional to
the square of wave amplitude™®*!. The reflection
efficiency, the ratio of reflected to incident power
is given by E, (¢) = | r, |*, and the power trans-
mitted is given by E, =1—E, (¢) = | t; |*5"%.
Therefore the power reflected and transmitted per

2 3/2
o .

unit incident power is E, (¢) = |r, |*+ | 1,

Transmitted energy depends on .

2.2 Wave transmission and reflection at control

location

The power is mostly transmitted at the beam
junction when ¢ is close to 1. The power is most-
ly reflected at the beam junction when ¢ approa-
ches 0. Therefore wave control is used some-

where downstream to absorb energy associated

with the transmitted propagating wave of the
beam junction when ¢ is close to 1 as shown in
Fig. 4(a). When ¢ approaches 0, wave control is
used somewhere upstream to absorb energy asso-
ciated with the transmitted propagating wave of
beam junction as shown in Fig. 4(b). Transmit-
ted Cor reflected) propagating wave of the beam
junction is incident on the control location and
gives rise to reflected and transmitted propagating

and near-field waves.

Incident wave ——»+——»
Transmitted wave

Reflected wave «——

F
H(w)
(a) ocloseto 1
<——<—— Incident wave
Transmitted |, Reflected wave
wave
w J:‘
(B S—— s I
0 ] X,
F

(b) o approaching 0

Fig.4 Schematic diagram of feedback control

At first, consider the first case when ¢ is
close to 1 as shown in Fig. 4(a). Wave control is
applied at position x;, = 0. The displacement of
the beam w~ (x,) and w™ (x,) in the regions x,
<0 and x,==0 are given by

w (x,) =b" exp(—ik,x,) + b exp(ik,x,) +
b exp(ky,xy) (26a)
w (xy) =c' exp(—ik,2) + chexp(— kyxy)
(26b)
where the time dependence exp (iwz) has been
suppressed.

For the same reason described in Section
2.1, the reflection and transmission coefficients
at the control location can be expressed as

Hi . Hi
4—0+1D H 41—+ H

@7

where #; and ¢, are the transmission coefficients,

t, =1+
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and r; and r, the reflection coefficients.

In this paper, the controller is designed to
absorb vibrational energy by adding optimal
damping to the structure. Supposing H (@) =
(1+1) wg, the power carried in a propagating
wave is proportional to the square of the wave
amplitude. The performance index of optimal
control is to make the dissipated energy at control
location the maximum. In other words, the opti-
mal control gain g can be found by assuming that
a wave is incident on onside of the control location
and then by designing the control gain so as to
maximize the absorb incoming energy, namely to
20'3,"2 + | t’g ‘ 2 ‘ tl | 263,’2 .

Therefore the power reflected and transmit-

minimize |7 |? ]2,

ted at control location is given by
Plg) =" (1406 """ +6" +6°)° (4 — 28w +
g’ )/ (¢ 4 20+ 26" + 26" +
o4+ gt w’ ) (28)

Then the frequency response of the optimal

controller is given by
H,(0) =1+ Dag 29
where g=2/w.

Next, consider the second case when the
power is mostly reflected at the beam junction (¢
approaches 0) as shown in Fig. 4(b).

For the same reason as stated above, the re-
flection and transmission coefficients at the con-
trol location can be expressed as
=1 —A = HL ()

4—+DH 4—A+DH
where t; and ¢, are the transmission coefficients,
ry and r, the reflection coefficients.

Table 1

2.3 Controller design

The optimal controller is noncausal”®*,
Hence, a real-time implementation must be some
approximations to this ideal. PD feedback control
is implemented, with the controller tuned so that
it is equal to the optimal controller at some spe-
cific frequencies w,. The controller then has the
frequency response

H.(w) =c¢, + ¢; (o) 3D
where ¢, =w,g and ¢, =g.

If the force is applied at a point x; = x,
(i=1,2), then the wave-control force is f. =
(wyx;st)0(xitx,,). For tuned PD control, substi-
tuting Eq. (31) to Eq. (20), using Laplace trans-
form, this becomes
folzist) =—[cywla;t) + cow(x; 1) 160 (x; — x4)

(32)

For collocated wave control, and with the

control force approximated by Eq. (32), the equa-

tions of motion can thus be written in matrix

form as
M: +C: +Kz =B"F(1) (33)

3 NUMERICAL EXAMPLES

In this section, some numerical results are
presented. In what follows, several dimensionless
parameters are: L =1, the first natural frequency
of the first beam w, = 1, the thickness ratio of
two beams ¢=0. 90, 0. 21 and 0. 05, and the cor-
responding non-dimensional natural frequencies

w0 (i=1,2,-+,9) are given in Tables 1—3.

First nine nondimensional natural frequencies of system (¢=0.90)

Mode number 1 2 3

1 5 6 7 8 9

=

Frequency 5.79 11. 54 21.62

27.37  40.45  48.39 65.29

Table 2 First nine nondimensional natural frequencies of system (¢=0. 21)

Mode number 1 2 3

4 5 6 7 8 9

Frequency 1. 88 4. 45 8. 05

11.63 15.53

22.04  32.38 52.82  78.68

Table 3 First nine nondimensional natural frequencies of system (¢=0. 05)

Mode number 1 2 3

4 5 6 7 8 9

Frequency 0.58 1. 15 2.07

3. 38 5.08 12.08  33.86

57.70  82.42
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A disturbance force is applied at x;, =0. 10L.
Simulation results are shown in Figs. 5 —14. In
Figs. 6, 14, the wave-control force is applied at
x; =L when ¢=0. 90. In Fig. 8, the wave-control
force is applied at x; = 0. 15L when ¢=0. 05, In
Fig. 10, the wave-control force is applied at x, =
L when ¢=0.21 (reflected energy at the beam
junction is almost equal to transmitted energy of
the beam junction). In Fig. 11, the wave-control
force is applied at x; = 0.15L. In Fig. 12, two
wave controllers are applied at x; = 0. 15L and
x;=L. Numerical results show the response at
x,=0.75L per unit disturbance force. In
Figs. 5—12, the value of ordinate is prescribed as

common logarithm of the actual deflection.

Deflection per unit force w

_1 0 1 1 1 1
0 20 40 60 80 100

Nondimensional frequency @

Fig.5 Frequency response before wave control (¢=0.90)

Deflection per unit force w

—_ ] 0 1 1 1 1
0 20 40 60 80 100

Nondimensional frequency @

Fig. 6 Frequency response after wave control

(6=0.90, x;=1L)

The positions of these points are chosen so as
to avoid the nodes of the modes. The controlled
and uncontrolled frequency responses are com-
pared. In the approximation that tuned PD con-
trol, the controller is tuned to be optimal at w, =
10.

Figs. 5,6 show that the frequency responses

before and after wave control when ¢=0. 90. The
power is mostly transmitted at the beam junction
when ¢ is close to 1, so wave controller is applied
at the second beam for good performance. With-
out control, sharp resonances can be observed.
While after wave control, controllers add damp-
ing to the structure. Energy of structure is ab-
sorbed. Sharp resonances are weakened.

Figs. 7,8 show that the frequency responses
before and after wave control when ¢=0. 05. The
power is mostly reflected at the beam junction
when ¢ approaches 0. Therefore, wave control is
applied at the first beam. In Figs. 6,8, relatively
poor performance can be seen. The degradation of
the performance is due to the fact that the point
of application of the wave controller lies to the
nodes of the modes. Such effects depend on the
specific form and location of the wave controller,
the conclusion is same as Refs. [5,12]. They can
be minimized by the suitable application of two or
more wave controllers.

Figs. 9— 12 show that the frequency respon-

Deflection per unit force w

-7 L . . 1
0 20 40 60 80 100

Nondimensional frequency @

Fig. 7 Frequency response before wave control (¢=0. 05)

Deflection per unit force w

_7 1 1 1 1
0 20 40 60 80 100

Nondimensional frequency @

Fig. 8 Frequency response after wave control

(6=0.05, x;=0.15L)
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g

5 4f
o

=l

2 -5t
8

B
8 o1

77 1 1 1

0 20 40 60 80 100
Nondimensional frequency @

Fig. 9 Frequency response before wave control (¢=0. 21)

Deflection per unit force w

7 . . . .
0 20 40 60 80 100

Nondimensional frequency @

Fig. 10 Frequency response after wave control

(6=0.21, 2, =L)

Deflection per unit force w

_7 1 1 1 1
0 20 40 60 80 100

Nondimensional frequency @

Fig. 11 Frequency response after wave control

(6=0.21, 2, =0.150L)

ses before and after wave control when ¢=0. 21.
Fig. 10 shows wave controller absorbs vibrational
energy, especially at lower frequencies. Fig. 11
shows wave controller absorbs vibrational ener-
gy, especially at higher frequencies. In Figs. 10,
11, relatively poor performance can be seen when
wave controller is only applied at the downstream
of the beam junction or upstream of the beam
junction, whereas Fig. 12 gives better perform-

ance. In fact, reflected energy at the beam junc-

Deflection per unit force w

*7 1 1 1 1
0 20 40 60 80 100

Nondimensional frequency @

Fig. 12 Frequency response after wave control

(6=0.21, 2, =0.15L, 2, =1L)

-3

Deflection per unit force w/ 10

._6 I L 1 L
0 20 40 60 80 100

Nondimensional time ¢

Fig. 13 Time response before wave control (¢=0. 90)

1.0

-3

Deflection per unit force w/ 10

0 20 40 60 80 100
Nondimensional time ¢

Fig. 14 Time response after wave control (¢=0. 90)

tion is almost equal to transmitted energy at the
beam junction when ¢ approaches 0.21, so wave
controllers are ought to be applied at not only the
first beam but also the second beam for better
performance. One controller absorbs reflected en-
ergy, and the other absorbs transmitted energy.
Figs. 13, 14 show that the time responses before

and after wave control when ¢=0. 90.

4 CONCLUSION

This paper presents the theoretical analysis
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and numerical results of wave control of two-
beam structures. Wave control is used to control
the wave motion of the structures. The incident
propagating wave is reflected and transmitted at
beam junction, and wave reflection and transmis-
sion coefficients at beam junction are also be de-
cided by the thickness ratio of two coupled
beams. The power is mostly transmitted at the
beam junction when the thickness ratio ¢ is close
to 1. When ¢ is close to 0, the power is mostly
reflected at the beam junction. Therefore wave
control is used somewhere downstream to absorb
energy associated with the transmitted propaga-
ting wave of the beam junction when ¢ is close to
1. When ¢ is close to 0, wave control is used
somewhere upstream to absorb energy associated
with the transmitted propagating wave of the
beam junction. In other circumstances, there is
not only reflected energy at the beam junction but
also transmitted energy. Now, better perform-
ance can be achieved by applying wave controllers
to two sides of beam junction. One controller ab-
sorbs reflected energy, and the other absorbs
transmitted energy.

Control gain is designed in frequency do-
main. PD control is adopted. In the time domain,
this corresponds to a tuned spring-damper combi-
nation. The results show that the wave control is
efficient for two coupled beams. Similarly, the

wave controller is designed for two coupled plates

lying in the x-y plane and its efficiency is proved.
References:

[1] Ma Xingrui, Gou Xingyu, Li Tieshou, et al. Devel-
opment generalization of spacecraft dynamics [ J].
Journal of Astronautics, 2000,21(3):1-5. (in Chi-
nese)

[2] Wang Liang, Chen Huaihai, He xudong, et al. Ac-
tive vibration control of axially moving cantilever
beam by magnetic force[J]. Journal of Nanjing Uni-
versity of Aeronautics & Astronautics, 2010,42(5);
568-573. (in Chinese)

[3] Miller D, Hall S, Flotow A von. Optimal control of
power flow at structural junctions[]]. Journal of

Sound and Vibration, 1990,140 (3):475-497.

[4]

(5]

[6]

[7]

(8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

(16]

Jha R, Bailey A, Ahmadi G. Combined active and
passive control of space structure vibrations during
launch [ C ]//44th AIAA/ASME/AHS Structures,

Structural Dynamics. and Materials Conference.
Norfolk, Virginia, USA: AIAA, 2003.

Mei C, Mace B R, Jones R W. Hybrid wave/mode
active vibration control[J]. Journal of Sound and Vi-
bration, 2001,247(5) :765-784.

Chen T, Hu C, Huang W H. Vibration control of
cantilevered Mindlin-type plates[J]. Journal of Sound
and Vibration, 2009,320(1/2):221-234.

Gardonio P, Elliott S J. Active control of waves on a
one-dimensional structure with a scattering termina-
tion[J ]. Journal of Sound and Vibration, 1996, 192
(3):701-730.

Brennan M ]J. Control of flexural waves on a beam u-
sing a tunable vibration neutralizer[ ]J]. Journal of
Sound and Vibration, 1998,222(3) :389-407.
Carvalho M O M, Zindeluk M. Active control of
waves in a Timoshenko beam[]]. International Jour-
nal of Solids and Structures, 2001,38(10-13).:1749-
1764.

Halkyard C R, Mace B R. Feedforward adaptive con-
trol of flexural vibration in a beam using wave ampli-
tudes[ J]. Journal of Sound and Vibration, 2002,254
(1):117-141.

EL-Khatib H M, Mace B R, Brennan M J. Suppres-
sion of bending waves in a beam using a tuned vibra-
tion absorber[ J]. Journal of Sound and Vibration,
2005,288(4/5):1157-1175.

Hu Chao, Chen Tao, Huang Wenhu. Active vibra-
tion control of Timoshenko beam based on hybrid
wave/mode method[J]. Acta Aeronautica et Astro-
nautica Sinica, 2007,28(2):301-308. (in Chinese)
Mace B R. Wave reflection and transmission in
beams[J]. Journal of Sound and Vibration, 1984,97
(2):237-246.

Mead D J. Waves and modes in finite beams: Appli-
cation of the phase-closure principle[J]. Journal of
Sound and Vibration, 1994,71(5):695-702.
Svensson J L, Andersson P B U, Kropp W. On the
design of structure junctions for the purpose of hybrid
passive-active vibration control[ J ]. Journal of Sound
and Vibration, 2010,329(9):1274-1288.

Meirovitch L.

[M]. New York: Wiley, 1990.

Dynamics and control of structures

(Executive editor; Zhang Huangqun)



