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Abstract: A hybrid Cartesian grid/gridless method is developed for calculating viscous flows over multi-element
airfoils. The method adopts an unstructured Cartesian grid to cover most areas of the computational domain and
leaves only small region adjacent to the aerodynamic bodies to be filled with the cloud of points used in the gridless
methods, which results in a better combination of the computational efficiency of the Cartesian grid and the flexi-
bility of the gridless method in handling complex geometries. The clouds of points in the local gridless region are
implemented in an anisotropic way according to the features of the thin boundary layer of the viscous flows over the
airfoils, and the clouds of points at the vicinity of the interface between the grid and the gridless regions are also
controlled by using an adaptive refinement technique during the generation of the unstructured Cartesian grid. An
implementation of the resulting hybrid method is presented for solving two-dimensional compressible Navier-Stokes

(NS) equations. The simulations of the viscous flows over a RAE2822 airfoil or a two-element airfoil are success-

Vol. 30 No. 3

fully carried out, and the obtained results agree well with the available experimental data.
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INTRODUCTION

During the early study of the numerical solu-
tion methods for partial differential equations
(PDE), Cartesian grid is utilized as a common
tool to discretize the physical domain. This kind
of grid is regular and it has no issues associated
with grid skewness and distortion, therefore, it is

very popular with many researchers''’.

However,
when dealing with complex configurations, Carte-
sian grid lines usually cross the physical boundary
while do not fit the body, so it is difficult to im-
plement the boundary condition in this kind of
gird method directly. To simplify the treatment
of the boundary condition, structured grid is then
proposed. This kind of method transforms the

physical body-fitted grid to regular grid in the
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computational domain and then solves the gover-
ning equations in the computational domain.
However, the transformed equations in the com-
putational domain are usually much more compli-
cated than the original ones in the physical do-
main.

Recently, a new type of numerical method
called gridless method has been proposed™. This
method is capable of directly estimating the deriv-
atives without transforming the problem from
physical domain to computational domain. It is
simple and flexible, because only a set of points
are required to be distributed in the physical do-
main without considering the connectives among
these points. However, when this method is ap-
plied to deal with different configurations, even if

there is only a little change between the configu-
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rations, all of the points have to be redistributed
once again, and this redundant work probably
slows down the computational speed and results
in low efficiency.

To overcome the difficulty of Cartesian grid
implementing the physical boundary condition and
to avoid the redundant work of point redistribu-
tion for gridless method, we proposed a hybrid
Cartesian grid/gridless method in our own previ-
ous work"!, The whole physical domain is cov-
ered by a base Cartesian grid and only a few of
clouds are introduced into the adjacent region of
the physical boundary. Because of Cartesian
grid's regularity and simplicity, the computing
time for generating grid is almost negligible and
numerical schemes are easy to be implemented on
the grid, and the local gridless treatment tech-
nique only requires a small amount of clouds to be
introduced to represent the configuration. There-
fore, the hybrid method not only reduces the re-
dundant work, but also provides the flexibility to
handle arbitrary configurations. The proposed
hybrid method has been used to solve Euler equa-
tions, and the inviscid flows over the bump, cyl-
inder and airfoils are successfully simulated re-
spectively.

In this paper, the hybrid Cartesian grid/grid-
less method is further developed to simulate vis-
cous flows over multi-element airfoils. In order to
simulate the thin boundary layer of the viscous
flows, the cloud of anisotropic points is imple-
mented in the local gridless region. A cloud over-
lap-free procedure is proposed, which enables the
hybrid method to handle close-coupled bodies in-
cluding multi-element airfoils conciderded in this
paper. The unstructured Cartesian grid requiring
the hybrid method is generated based on an adap-
tive refinement technique, which can help to con-
trol the quality of the clouds at the vicinity of the
interface between the grid and the gridless re-
gion. The resulting hybrid method is applied to
solve  two-dimensional compressible Navier-
Stokes (NS) equations. The viscous flow over a
RAE2822 airfoil is first simulated, and the nu-
merical result obtained is compared with the a-
vailable experimental data, then the viscous flow

over a two-element airfoil is simulated, which

demonstrates the ability of the present method for

treating more complicated flows over multi-

bodies.

1 GOVERNING EQUATIONS

The governing equations of this study are the
compressible NS equations in Cartesian coordi-
nates, which can be written as

W | JE Q‘*@EV—FQFV):O
dt dx dy
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where W is the vector of conservative variables, E
and F are the convective flux terms, Ey and Fy
the viscous flux terms

W=Lp. ous v, pE "

E=[pu. pu’ + ps pwo, puH ]

F:[pv,‘ouv, o+ b pUH]T (2)

Ev=[0, s 7yu» 6. ]"

Fy=[0,7,:17,,0,]"
where p, p, E, H are the density, the pressure,
the total energy per unit mass, the total enthalpy
per unit mass, respectively, u and v the cartesian
components of the velocity vector, r is the viscous
stress and @ the term describing the work of vis-
cous stresses and the heat conduction in the fluid.
The laminar viscosity coefficient g, requiring the
calculation of Ey and Fy is computed with the

[ and the turbulence viscosity

Sutherland formula
coefficient 7 is obtained from the Spalart-Allma-
ras turbulence model”’. The NS equations are
non-dimensionalized by free stream density p.. ,
free stream pressure p.., reference length L, and

Re..
viscosity p.. (7> , where Re.. and Ma..

(«/; . Ma)

represent the Reynolds number and Mach number

of the free stream.

2 DECOMPOSITION OF COMPU-
TATIONAL DOMAIN

The entire flow domain is decomposed into
two types of sub-domains, one is discretized by
Cartesian grid and the other is filled with clouds
of points, as shown in Fig. 1. First, the surfaces
of the aerodynamic bodies are broken into edges
for a full description. Then, the unit normal vec-

tor of all the points on the surfaces are calculated,
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and new points are produced along the normal
vectors layer to layer until a user specifies the
number of layers. The neighbors of any point in
the gridless zone can be easily defined since these
points are generated in the above regular manner.
When two or more bodies are closely coupled in
the domain, for example, the main element and
the flap of GA (W)-1 two-element airfoil in
Fig. 1, their gridless zones overlap. The overlap
region can be deleted by determing the distances
between the point and each body. It can be easily
noted that the point spacing normal to the wall
can be controlled during the generation of the
gridless zones by the user simulating the bounda-
ry layer. The remaining part of the flow domain

is discretized by an unstructured Cartesian grid u-

sing the adaptive refinement technique-!,

Fig. 1 Points and Cartesian grid around GA(W)-1 airfoil

As both Cartesian grid and gridless clouds
are used to discretize the flow field, these two
different regions need to exchange the flow infor-
mation in order to obtain the physical solution. If
the interpolation technique is adopted to exchange
the flow information, truncation error may be
caused especially in the vicinity of critical flow
features such as the shock waves. In this paper,
we follow our previous work™ to use dual points
method for exchanging flow information, which
means the first two layers of the Cartesian points
near the gridless region(the square points in Fig.
2 are selected and considered for gridless zone
computations, and the satellite points of these
dual points can be found using point-selection

[6]

strategies'” , as shown in Fig. 2.

Fig. 2 Cloud of points at interface

3 NUMERICAL DISCRETIZATION
OF GOVERNING EQUATIONS

For gridless method, the spatial derivatives
of any quantities are evaluated with linear combi-
nations of certain coefficients and the quantities in
the cloud of points. For example, in the cloud of
points C(7) shown in Fig. 2, the first spatial de-

rivatives of function f at point i are evaluated

with the following linear combination forms-"
afl < ‘ af|l < ‘ f
Ir [*;amfikv Jy ]}*;,&kfm (3)

where m is the number of satellite points in the
cloud of C(7), and f; the value at the midpoint
between points ¢ and k. The coefficients a; and g
can be obtained with a weighted least-squares
curve fit to the following linear equation
f=a-+bx +cy 4
On the Cartesian grid, suppose h; is the
space step along x and y axes at point i, then the
first spatial derivatives of function f at point i can
be computed using the central difference scheme

aif :fil-:*fiw , ﬂ :f,;\'*fls 1))
dx |; h; Iy |; h;
where fixs fiws fis» fin are the values at the
midpoints between points 7 and its neighboring pi-
onts in the east, the west, the south and the
north directions.
If Eq. (3) is applied to the convective flux of

the NS equations, the following expression can be

obtained
3 3 m m
oE + oF _ Z (awE iy + BuF i) = ZGM: (6)
dx  dy = k=1

The numerical flux G, at the midpoint be-
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tween points ¢ and %k can be obtained by using

! . .
Roe's approximate Riemann solver

G, = %(G(W@ FCW) — | A s Wi —W0))

D)
where A are the flux Jacobian matrices of G. The
conservative variables at the midpoint are recon-

structed with

JWL W+ L (TW, )
1 (8
IWR =W, — ?QOL» (W, s ry)

where YW is the gradient of the conservative var-
iables, and ¢ the Venkatakrishnan's flux limiter
employed to prevent nonlinear instability™.

The viscous terms of the NS equations are e-

valuated using Eq. (3) at each point

(24
dx #(71

The first derivative at the midpoint between

m

= e (5" 9

i k=1

points i and % is obtained with'"

<(77u) . :A—“};(uﬁ —u;)+

dx As
1 Ay Jul | dul N (du|  du
2 As (Ay<(71' i + dx k> AAT(")y i dy k) )

(10)
where Az, Ay, and As® are given as
Ar=x,—x:s» Ay=1y, — v;» As* =Ax" 4+ Ay*
(1D
After the spatial discretization, the semi-dis-
cretization form of the NS equations at point 7 can
be expressed as

IW
dt

+R, =0 12

where R; represents the residual error at point i.
In order to obtain the steady solution, an explicit

five-stage Runge-Kutta time integration schems is

used
WO —w
W(m) :W(O) _ a,,,Al‘R“”il)
m=1,-,5 (13)
WD —y®

where the superscript n denotes the current time lev-
el, m the internal step and n+1 the next new time

level. The factor a,, can be found in Ref. [ 4 ].

4 NUMERICAL RESULTS

To evaluate the accuracy of the presented hy-

brid method, the transonic viscous flow over a
RAE2822 airfoil is first considered. The points
and the used Cartesian grid are shown in Fig. 3.
The total number of points is 23 866 with 310
points on the airfoil. The point spacing normal to
the airfoil surface is 1. 0}X10 7,
tours of the flow field obtained with Ma=20. 73,
a=2.79°,Re=6.5X10° are shown in Fig. 4. We

can find that the contours change smoothly at the

The density con-

interface. The pressure coefficient ¢, and friction
coefficient ¢; distributions on the airfoil surface
are compared with the experimental data in
Ref. [8] in Fig. 5, which indicates good agree-
ment between the numerical results and the ex-
perimental data. From the residual history pres-
ented in Fig. 6, the hybrid method has a reasona-
ble convergence character. Then the viscous flow
over a GA(W)-1 airfoil is simulated. The points
and the used Cartesian grid has been shown in
Fig. 1. The total number of points is 29 768 with

250 points on the main element surface and 190

points on the flap surface. The density contours

Fig. 3 Points and Cartesian grid around RAE2822 air-
foil

Fig. 4 Density contours around RAE2822 airfoil
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of the flow field obtained with Ma=0. 21,a=10°,Re
=2.3X10° are shown in Fig. 7. The ¢, distributions
on the airfoil surface are compared with the experi-
mental data in Fig. 8, which indicates a good agree-
ment between the numerical result and the experi-

mental data again.
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Fig.5 ¢, and ¢ distributions around RAE2822 airfoil
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Fig. 6 Convergence history

Fig. 7 Density contours around GA(W)-1 airfoil

S CONCLUSION

The hybrid Cartesian grid/gridless method is

successfully developed to simulate viscous flows

Numerical result
Experimental result

Fig.8 ¢, distribution around GA(W)-1 airfoil

over single and multi-element airfoils. The un-
structured Cartesian grid can decompose the com-
putational domain easily and efficiently, and the
cloud of anisotropic points implemented in the ar-
ea adjacent to the body can capture the boundary

layer as accurately as the shock wave close.
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