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Abstract: A system of linear time-dependent hyperbolic partial differential equations in the form of the time-domain
Maxwell's equations is numerically solved using a geometric multigrid method. The multilevel method is an adap-
tation of Ni's cell-vertex based multigrid technique, originally proposed for accelerating steady state convergence of
nonlinear time-dependent Euler equations of gas dynamics. We discuss issues pertaining to the application of the
geometric multigrid method to a system of equations where the major issue is of accurately propagating linear

waves over large distances leading to major constraints on the required grid resolution in terms of points-per-wave-
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INTRODUCTION

Multigrid methods in the geometric form
have been proven to be very efficient in accelera-
ting convergence of linear boundary value prob-
lems by using a solution space consisting of a hi-
erarchy of meshes from fine to coarse. They take
the advantage of efficient smoothing high fre-
quency error components in the iterative solution
of the system of linear algebraic equations arising
from discretization of linear elliptic partial differ-
ential equations (PDEs). The multigrid technique
has, in the past, also been extended to accelerate
solution of nonlinear hyperbolic time-dependent
PDEs in the form of the time-dependent, inviscid
Euler equations of gas dynamics, where solutions
are usually severely constrained due to time-step
restrictions arising out of stability considerations.
The arguments for multigrid efficiency in this
case are usually heuristic in nature, and are based
on the perceived ability of coarser grids, subjected
to more relaxed stability criteria, being able to
rapidly expel disturbances from the computational

domain. The cell-vertex multigrid technique due
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to Nit" is a good example of such a multigrid
technique where a hierarchy of discretizations is
used to obtain rapid convergence of the Euler e-
quations of gas dynamics while also provide a cell
vertex framework for the finite volume discretiza-
tion. The multigrid technique, in general, has
not been commonly applied to linear time-depend-
ent hyperbolic systems like the time-domain Max-
well's equations where along with stability con-
siderations, strict limitations are placed on the
discretization in terms of points-per-wavelength
to accurately propagate linear waves over long
distances. In the present work, the geometric
multigrid method is used to solve the time-domain
Maxwell's equations in a finite volume time do-
main (FVTD) {ramework. The multilevel meth-
od used here is an adaptation of Hall's* exten-
sion of Ni's cell-vertex based multigrid technique,
originally proposed to accelerate the convergence
of the time-dependent Euler equations of gas dy-
namics. FVTD methods are increasingly em-
ployed to compute electromagnetic scattering be-

cause of their greater flexibility in dealing with

broad-band signals and diverse material proper-
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ties®". However, FVTD methods are of limited
applicability for practical applications involving
large electric sizes. The computational grid for
FVTD methods can be based on resolution of
10—20 points per wavelength (PPW) resulting in
very fine meshes at large electric sizes along with
very small time step. In addition, computations
are carried out for many sinusoidal time cycles to
achieve harmonic steady state. This results in
long computational times for FVTD techniques
make many common engineering applications pro-
hibitively expensive. In the current multilevel ap-
plication, the time-domain Maxwell equations are
solved to a harmonic steady state on a hierarchy
of meshes using Ni's approach. The linear nature
of Maxwell’s equations allows for a more accurate
representation of the fine-grid problem on the
coarse grid due to the constant Jacobian matrix.
Artificial viscosity is also not required to smooth-
en interpolation errors as in the nonlinear case.
The major drawback, as compared to other well
known multigrid applications, is the need for
maintaining a resolution of at least 5—6 PPW on
the coarsest level, for accurately simulating wave
propagation both in terms of phase and amplitude
on the coarse grid to limit the maximum number
of levels that can be traversed in a multigrid cy-

cle.

1 GOVERNING EQUATIONS AND
NUMERICAL METHOD

Maxwell's  equations for electromagnetic
wave propagation in free space, can be expressed
in 2-D conservative form for transverse magnetic
(TM) or transverse electric (TE) waves, simply
as

du | Ifw) | Ig(w) _
Jt dx dy

0 @b)

The FVTD technique numerically solves the
integral form of Eq. (1) in a discrete finite volume
framework and is described in detail in Refs. [ 3-
5]. In the scattered field formulation used here,
the scattered field variables are solved and an ana-
lytically defined incident field is assumed to be

available.

1.1 Ni's multigrid method and Hall's extension

Ni's basic cell-vertex based finite volume
scheme can be considered to belong to the fluctua-
tion-splitting framework for the solution of hy-
perbolic conservation laws. In Ni's finite-volume
time integration scheme, the fluctuation is calcu-
lated based on state vector stored at cell vertices
and distributed to cell vertices after a discrete
time-step. This distribution finally leads to sec-
ond-order accurate cell-vertex based Lax-Wen-

droff scheme!',

Ni, in his original paper, re-
quired heavy numerical damping while solving for
strongly nonlinear systems encountered in the
form of transonic flows in gas dynamics. The lin-
ear nature of the time-dependent Maxwell's equa-
tion in free space may be a more appropriate
choice for the application of Ni's novel cell-vertex
based finite volume scheme, as there is no reli-
ance on user defined numerical damping to stabi-
lize the scheme'. This basic solution technique
starts with the calculation of "change” in a control
volume based on cell vertex flux values and forms
the first-order term in the Lax-Wendroff correc-
tion. This first-order discrete numerical "change”
AU for an arbitrary quadrilateral cell ¢ is approxi-
mated using the divergence theorem as
4
AU, =B (S [(Fwn, +Gn,)s],) (2
AA

where AA. is the area of the cell ¢, s the face
length with an outer unit normal vector n, the
Cartesian components of which are n, and n, and
At the time step restricted by the Courant-
Friedrich-Lewy (CFL) stability criteria, flux vec-
tors F(u), G(u) are computed for each pth cell
face by taking average of the flux vectors stored
at vertices of the face (Fig. 1).

The first-order change in fine grid at grid

point 1 is obtained as an area weighted quantity

(AU“ — AUu AAu + AU/; AAI; + AUA AAl + AUd AAC[
g AA, + AA, + AA, + AAy

(3
This change is used to determine the second-order
contribution in the total Lax-Wendroff correction
to be distributed to relevant cell vertices in order

[1-2]

to update the state vector The total correc-
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Fig. 1 2-D arbitrary computational cell

tion at grid point 1, 8U,, is obtained by adding
the first-order and the second-order contributions
as
(U, =AU + [(AF, — AF,) Ay, +
(AF, — AF.) Ay, + (AG; — AG,) Ax; +

o ) At
(AG, — AG,) Ax; ] IAA. 4

where Ax, = (x, —x4) s Az, = (x. —x,)s Ay, =
(y,—ys) and Ay, = (y.—y,). The state vector at
next time level is updated by adding the total cor-
rection 8U, to the state vector at time level n.
Unsteady fluxes AF. and AG. in Cartesian x and vy
directions respectively for cell ¢ are found by eval-

uating the Jacobians at the corresponding vertices
[2]

as

sr.=L[() + () + (), + () ]
3

o= 4[(38),+ (28).+ (39),+ (35) ]
(6)

The multigrid technique interwoven with the
basic time integration technique employs progres-
sively coarser grids to propagate the fine grid cor-
rection rapidly in the computational domain.
When this time-stepping procedure is applied on
the coarse levels, the change or first-order correc-
tion for the coarse mesh cells is estimated as the
weighted average of the total corrections of the
fine mesh nodes is defining the corresponding
coarse mesh cell. Second-order correction terms
to fine-grid accuracy on coarse meshes are then
calculated based on this first-order correction and
the Jacobian matrix. This is then distributed to
the corners of the coarse mesh cells by the same

distribution formula. This procedure is repeated

for several coarse levels. Once the coarsest grid is
reached, the coarser grid correction is then inter-
polated back on the fine grid and added to the so-
lution of the fine grid. The multigrid process is
shown schematically in Fig. 2 and discussed in de-
tail in Ref. [6]. In Fig. 2, I represents an inter-
polation operator and (2, a grid. It may be noted
that second-order terms in the coarse grid can be
described purely in terms of the first-order chan-
ges in linear systems since the Jacobian matrix re-
quirement for defining unsteady flux terms is con-
stant. This is in contrast to that for nonlinear
system where the Jacobian matrix on the coarse
grids requires to be approximated using fine grid

values.
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Fine grid
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Fig.2 Schematic of multigrid process

2 SAMPLE RESULTS

Multigrid results using two and three levels
are compared with single (fine) grid solutions.
Sample results are presented for electromagnetic
scattering from perfectly conducting (PEC) circu-
lar cylinder with a/A=09.6 and a/A=14. 4, where
a is the radius of cylinder and A the wavelength of
the incident harmonic TM wave. More details and
results can be found in Ref. [6]. An 'O’ topology
grid is used for the discretization with coarse me-
shes obtained by amalgamating four constituent
fine-grid cells. Computations are carried out for
the circular cylinder using two-level and three-
level multigrid scheme with grid resolution of 22
PPW and 26. 7 PPW respectively at the finest lev-
el on the scatterer surface. Figs. 3 —4 show a
comparison of two-level multigrid (a/A = 14.4)

and three-level multigrid (a/A = 9.6) solution
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Fig. 4 Bistatic RCS, circular cylinder (3-level,a/A=9. 6)

with fine grid solution and the exact result, where
RCS means radar cross section. Almost fine-grid
accuracy is obtained except for a narrow region in
the shadow area between 4-50°, Bistatic RCS ob-
tained using three-level multigrid method is fur-
ther compared with a single-level solution on
purely the coarsest grid with resolution of 6. 67
PPW on scatterer surface. This comparison is
done to bring out the ability of the present multi-
grid method to enforce almost fine-grid accuracy
while cycling the solution through a hierarchy of
grids. This comparison in Fig. 5 shows the en-
hanced accuracy of the three-level multigrid solu-
tion when compared to a solution obtained on
purely the coarsest grid. The coarse grid solution
deviates from the exact solution even at the im-
portant monostatic point & 180°. Numerical ex-
periments further indicate a minimum of at least
5—6 PPW on the coarsest mesh to accurately
simulate wave propagation which limits the num-
ber of coarser levels that can be traversed in such

applications.

Fig. 6 shows a comparison of bistatic RCS ob-
tained using three-level multigrid and fine grid so-
lution with the Ref. [3] results. Almost fine-grid
accuracy is obtained using the three-level multi-

grid scheme.
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Fig. 6 Bistatic RCS, NACA 0012 (3-level and coarsest
grid, a/A=10.0)

3 CONCLUSION

The geometric multigrid method is used to a-
chieve a faster convergence to harmonic steady
state in the numerical solution of time-domain
Maxwell equations for electromagnetic scattering
Unlike

more common multigrid application involving lin-

problems using the FVTD technique.

ear boundary value problems, the major issue in
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the numerical solution of linear time-dependent
hyperbolic PDEs is the accurate propagation of
linear waves over large distances. In the current
application using Hall's modification of the Ni's
multigrid method, the linear Maxwell’ s system
does not requires the Jacobian to be approximated
on coarser levels leading to a more accurate im-
plementation. No artificial damping is required to
stabilize the multigrid technique for the linear
Maxwell's system or to dampen interpolation er-
rors. But a minimum PPW of 5—6 on the coar-
sest level for accurate wave propagation places
major limitations on the number of levels that can
be traversed in the multigrid framework leading
to a modest 30%—40% reduction in overall CPU

time.
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