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Abstract: The recent result of an orbit continuation algorithm has provided a rigorous method for long-term numer-

ical integration of an orbit on the unstable manifold of a periodic solution. This algorithm is matrix-free and em-

ploys a combination of the Newton-Raphson method and the Krylov subspace method. Moreover, the algorithm

adopts a multiple shooting method to address the problem of orbital instability due to long-term numerical integra-

tion. The algorithm is described through computing the extension of unstable manifold of a recomputed Nagata's

lower-branch steady solution of plane Couette flow, which is an example of an exact coherent state that has recently

been studied in subcritical transition to turbulence.
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INTRODUCTION

A dynamical system theory has recently
turned out to be useful to elucidate subcritical
transition to turbulence by studying exact coher-
ent states, i. e. ,» equilibria and periodic solutions.
In shear flow, an invariant set in state space that
has only one unstable direction in phase space is
called an "edge state”™".

The edge state has a special property in
which its stable manifold separates the laminar
and turbulent basins. State points within the lam-
inar-turbulent boundary are attracted to the edge
state. For initial conditions just exceeding a criti-
cal value, corresponding state points will escape
out of the laminar basin along the unstable mani-
fold of the edge state.

Extension of unstable manifold encounters
orbital instability for long-term numerical inte-
a multiple

gration. To minimize instability,
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shooting method™ is applied. The basic idea of
this multiple shooting method is to cut the piece
of orbit to be extended into several segments,
solve a boundary value problem for each, and
then concatenate the segments by a "gluing condi-
tion”. Cutting the orbit into several segments re-
duces the propagation of numerical error through
time by shortening the time interval.

The introduction of Krylov subspace method
residual

that is minimal

(GMRES)®™ in Newton-Raphson has taken a ma-

known as general

jor step in solving linear equations. This combi-
nation of Newton-Raphson and GMRES is often
referred to as Newton-Krylov iteration. This
method has recently been used extensively in fluid
dynamics to solve large system of ordinary linear
equations arising from the discretization of the
Navier-Stokes equation.

In this paper, an orbit continuation algo-
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rithm that uses Newton-Krylov iteration is illus-
trated to solve a system of linear equations pro-
duced by multiple shooting method. This algo-
rithm is used to extend the unstable manifold of a
recomputed Nagata' s lower-branch steady solu-
tion™. In minimal Couette flow™, the solution
appears for an elongated streamwise length of the

computational box"™,

1 NEWTON-KRYLOV COMPUTA-
TION OF STEADY SOLUTION

The plane Couette flow, where the Reynolds
number is based on half the difference of the wall
velocities U and half the separation of walls A, is
studied. The computation is performed on a com-
putational box with streamwise period L, =
1. 9637wh and spanwise period L. = 1.2xh. The
walls are separated by a distance 2h. A resolution
of 32 X33 X 32 number of grid points is used in
the streamwise, wall-normal, and spanwise direc-
tions, respectively. The dealiased Fourier expan-
sions are employed on the wall-parallel directions
and Chebyshev-polynomial expansion on the wall-
normal direction. The number of degrees of free-
dom of the discretized system in Navier-Stokes
equation is N = 11 117. The Nagata' s lower-
branch steady solution is obtained using Newton-
Krylov iteration. This steady solution has only
one unstable direction in phase space and thus an

example of a simple edge state.

2 ORBIT CONTINUATION BY
TIME INTEGRATION

Consider an N-dimensional dynamical system

dx
E—f(x) @))

where x € RY represents a state point in an N-di-
mensional state space and f & RY represents the
vector field obtained from the Navier-Stokes
equation. The orbit x(z) is given by the time in-
tegration of Eq. (1) at any time #. The initial con-
dition is fixed as

x(0) =x, +ev, (2)

where x, is the recomputed Nagata' s lower-

branch steady solution, v, € RY the unstable eig-
envector of the steady solution, and ¢ a small pa-
rameter. Eq. (1) is integrated until it intersects a
fixed plane

g(x(T)) =c (3)
where g is a scalar function and ¢ is a constant.
The choice of g may depend on the problem at
hand. In this study g refers to the sum of energy
input (I) and dissipation (D) rates, both normal-

ized with respect to their laminar state values,

given as
LL,
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where u in Eq. (4) is the streamwise velocity and
o in Eq. (5) the vorticity vector. Other choices of
g include fixing the integration time or length of
the segment. From here on we call this orbit con-

tinuation by time integration as single shooting.

3 ORBIT CONTINUATION BY
MULTIPLE SHOOTING METHOD

Consider the simplest example of multiple
shooting method in which the piece of orbit is to
be cut into two segments. Let the two segments
be N-dimensional column vectors 7, (t;) and
v, (t;) with integration times T, and T,, respec-
tively. The initial condition of ¥, (#;) is fixed as

7,(0) =x, +ev, (6)
which is essentially the same as that of Eq. (2).
Using Eq. (6) as an initial condition, Eq. (1) is
integrated until it intersects a fixed plane

g (1)) =¢ P)
When Eq. (7) is

achieved, T, and the initial point of the second

for a constant value ¢;.

segment ¥, (0) are made fixed, and integration for
the second segment is resumed until the orbit in-
tersects a final plane

gy, (Ty)) =c, (8)
for a constant value ¢,. T, is made fixed after the
second integration. The segments are ensured
continuous by the gluing condition

Y2 (0) — 7, (T,) =0 (€D)
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The (N+2) Egs. (7—9) are solved simulta-
neously for (N-+2) unknowns 7,(0), T, and T,
using Newton-Krylov iteration.

For triple shooting there will be an increase
of (N+ 1) unknowns. These unknowns are the
initial point of the third segment y;(0) and its in-
tegration time T5. Also, (N-+1) equations will
be added to the system of linear equations. These
equations are the new final plane, constant under
¢y, for the termination of the integration for the
third segment and the gluing condition for the
second and third segments, given respectively as

gy, (T3)) =c; (10)
Y5 (0) — ¥, (T,) =0 an

The (2N + 3) equations for triple shooting
are solved simultaneously. For every increase in
the number of segments there will be a corre-
sponding increase of (N + 1) unknowns coming
from the initial point of the new segment and its
integration time, as well as increase of (N+1)
equations coming from the new final plane and
gluing condition. To sum up: For i/ segments,
there are ((i —1) N+ i) equations to be solved
simultaneously using Newton-Krylov iteration for

((i—1)N-+i) unknowns.

4 RESULTS AND DISCUSSION

Orbit continuation is performed on the one-
dimensional unstable manifold of a recomputed
Nagata's lower-branch steady solution by single
shooting as well as double and triple shooting
methods for a fixed value of ¢ of the initial condi-
tion. Fig. 1 is a piece of the extended unstable
manifold of the steady solution projected onto I-D
plane. The dots denote the instantaneous points
on the extended unstable manifold where visual-
ization of flow structure is taken.

The unstable manifold stays for some time
around the energy level of the steady solution and
then rapidly escapes from that state. The differ-
ence of the state points in the final plane of two
different types of shooting is calculated, that is
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Fig. 1 A piece of extended unstable manifold of recom-

puted Nagata's lower-branch steady solution

where X and X' are state points in the final plane,
the latter is from the shooting with more seg-
ments, and | ¢ || denotes the Euclidian norm.
It is found that until before the continued unsta-
ble manifold makes a return trip to the steady so-
lution, the state point in the final plane of either
double or triple shooting is comparable with that
of single shooting, at least for 10~%, However,
during the trip back to the steady solution, the
result of single shooting deviates significantly
from that of double or triple shooting method.
The difference between the state points in the fi-
nal plane of double or triple shooting has in-
creased as much as 107*in comparison to that of
single shooting. On the other hand, the state
points in the final plane by use of double and tri-
ple shootings remain consistent with each other
even for continued orbit returning back to the
steady solution, at least for 10" %,

For double shooting the choice of the first
plane does not affect the result of the final plane.
The same is true for triple shooting in the case of
its first and second planes. Hence, we are free
from setting a particular choice of middle
plane(s).

The behavior of the flow structure during the
extension of the unstable manifold is observed.
Figs. 2—4 are the flow structures at points a, b,
and ¢ on the unstable manifold in Fig. 1, respec-

tively. The gray isosurface is the null streamwise

velocity, in which the corrugation represents stre-
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amwise streaks. The red and blue isosurfaces,
which is at 1. 0(U/h)? of the second invariant of
velocity gradient tensor, represent vortex tubes
for clockwise and counter-clockwise streamwise
vorticity components, respectively.

;————-/

z

Fig. 2 Flow structure at point a in Fig. 1

Fig. 3 Flow structure at point 6 in Fig. 1

Fig. 4 Flow structure at point ¢ in Fig. 1

At point b, patches of streamwise vortices
start to develop at the crest and valley of the
streak. Also, the shape of the streak is starting
to be deformed from that at point a. This de-
formation is due to the spanwise bending of the
streak induced by the instability. At point ¢, the
patches of streamwise vortices have grown in size
and have completely deformed the shape of the
streak. These streamwise vortices are known to
be necessary structures found in the regeneration

cycle in near-wall turbulence™™,

S CONCLUSION

An orbit continuation algorithm is described,

which adopts a multiple shooting method by ex-
tending the unstable manifold of a recomputed
Nagata's lower-branch steady solution. For short
orbit, the result of single shooting is consistent
with that of multiple shooting. However, for
longer orbit, single shooting suffers numerical er-
ror through time. This error is reduced by short-
ening the integration time through the application
of multiple shooting. The flow structures at vari-
ous points on the extended unstable manifold are
observed, where the presence of streamwise vor-

tices which are necessary structures in near-wall

turbulence is found.
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