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Abstract: The discontinuous Galerkin (DG) finite element method has been popular as a numerical technique for

solving the conservation laws. In the present study. in order to investigate the shock wave structures in highly

thermal nonequilibrium, an explicit modal cell-based DG scheme is developed for solving the conservation laws in

conjunction with nonlinear coupled constitutive relations (NCCR). Convergent iterative methods for solving alge-

braic constitutive relations are also implemented in the DG scheme. It is shown that the new scheme works well for

all Mach numbers, for example, Ma = 15.
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INTRODUCTION

The finite volume method has been common-
ly used in computational fluid dynamics (CFD).
However, the accuracy of the finite volume meth-
od is limited to the second order in most cases.
The accuracy can be improved by high resolution
schemes that usually involve high computational
effort. The discontinuous Galerkin(DG) method
is regarded as an alternative approach for CFD
based on the finite volume framework. The DG
finite element method has been popular as a nu-
merical technique for solving the conservation

[1-6]

laws'"* and has been successfully applied to a va-

riety of problems, such as fluid dynamics, acous-
tics and magnetohydrodynamics.
Depending on the basis function applied to

the scheme, the DG scheme may be divided into

[1-4] 5-6]

modal or nodal®®®. It has also been developed

for the Burgers equation'*"!

, which is a simpli-
fied model equation of the hyperbolic conservation

laws, and the compressible Navier-Stokes-Fourier
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(NSF) equations™®!,

features of the finite element and finite volume

This method combines key

methods. In the DG method, field variables are
considered discontinuous across elemental bound-
ary, which circumvents the need of assembling
computationally demanding global matrix and
leads to a less in-core memory required in compu-
tation. The DG method easily handles complicat-
ed geometry and boundary conditions by utilizing
unstructured grids and multi-grids. Moreover,
the DG method can be parallelized and thus suits
well for parallel computer platforms. The DG
method has several useful mathematical proper-
ties with respect to conservation, stability, and

L) These advantages are the motiva-

convergence
tions to select the DG method for numerical solu-
tions of the conservation laws in the present
work. The aim of the present study is to develop
an explicit modal DG scheme for the conservation
laws in conjunction with nonlinear coupled consti-

tutive relation (NCCR) models in order to inves-

tigate the structure of shock waves in thermal
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nonequilibrium. The theoretical breakthrough of
the proposed scheme is that a DG scheme for rar-
efied gases is developed by introducing an auxilia-
ry unknown of the stress and by solving the non-

Newtonian constitution relation in algebraic way.

1 DG SCHEME FOR NSF EQU-
ATIONS

Non-dimensional vector form of the NSF

equations can be expressed as!’*

JU+VF,U)+VF;,WU,VU)=0

ou
I ) 1
U=|pu| s Fou— | P T NRP
ok _1
kau—FNSRe])u
0
Fvis - i H
Re 1
I + ECPrQ

where one-dimensional variables are defined: p is
the mass density, u the fluid velocity in x-direc-
tion, p the pressure, E the total energy density,
IT the shear stress in ax-direction, and Q the heat
flux. If the spatial coordinate is reduced by the

mean free path A, the dimensionless parameters
are N, = v/2y/n Ma, Reynolds number Re =

Vyn/2Ma. and Ec=(y—1)Ma*'"",
ter y is the specific heat ratio of gas, Pr the

The parame-

Prandtl number, and Ma the reference Mach
number. For classical NSF model, the shear
stress IT and the heat flux Q are computed as fol-
lows: IT=—(4/3) p(du/dx),Q=— K(@T/dx),
where K is the thermal conductivity K =T, T
the gas temperature and s a constant, T = p/p,
and p the viscosity, 4= T°. The relation, p =
yMa* (y — 1) (pE — 0. 5p0u’ ), is also used in the
formulation.

The mixed DG formulation proposed in
Ref. [4] is employed in spatial discretization of
the NSF equations. This formulation will solve
the second-order derivatives in viscous terms by
adding auxiliary unknown S, because the second-
order derivative cannot be accommodated directly

in a weak formulation using a discontinuous func-

tion space. In this work, S is chosen to be deriva-
tives of the conserved variables U, setting S(U) =
T°VU. Then a coupled system for S and U can be
derived as

S—T'VU=0

JU+VF, (U)+VF,U,S =0

The spatial derivatives of primitive variables

such as u, are then computed by expanding the
derivatives of the conservable variables, for ex-
ample T'u, = (1/p) € T* Cou), — T*p,u). Consti-
tutive relations for two models are expressed as
follows: For the NSF model (IT, Q) =
Slinear (SCU)), and for the NCCR model (IT,
Q) neer = Soontiner (SUD) s p, T). In order to dis-
crete the coupled system (1), the numerical solu-
tions of U and S are approximated by U, and S, ,

respectively, shown as

k
U, (.00 = D> U(1) ¢'(2)

b
S, (x.t) = ZS}(I) o' (1)
i=0

where ¢ is the basis function. Computational do-
main contains N elements (cells) that are equally
spaced. In this study, orthogonal Legendre basis
function is adopted for the function ¢. The cou-
pled system (1) is multiplied with the basis func-
tion ¢ , and then integrated by parts for derivative
terms over element I, so the weak formulation of the

coupled system can be derived to find U, and S,
|s¢det [TV gUde—| T gUdr—o0
I 1 al

a9

JtJIU ¢ dr _le SDFde JrJ(” ¢ Fiode =

J \V4 gDFde "‘J gDF\'isd‘T:O
1 a1

where 91 denotes the boundaries of the element
I. The equations of auxiliary unknowns are re-
solved first to compute the derivatives of conser-
vative variables, in which the variable T(x,1) is
updated at each time step. The boundary inte-
grals of each element are replaced by a numerical
flux function h as follows.
h,. (U .U ,n)=0.5[F,, U )+
F, U H—CWU"'—U )]
where C=max(|u" | +a /Ma,|u" | +a’/Ma).

For inviscid terms, the local Lax-Friedrichs
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(LxF) flux, h;,, is applied. The Mach number
a/Ma, instead of the speed of sound a (=T"%),
appears in formulation of the coefficient C from
the characteristic speed in dimensionless form.
The central flux is applied to the remaining
boundary integrals
h,, U .S U ,S ;n) =
0.5[F, WU ,8)+F,U".§)]
h,..(U .U ;n) =
0.5[T" U+ T U"]

The volume integrals within the element I
are resolved by the Gaussian quadrature with the
(2k+1) Gaussian pointst,
shock detection proposed in Ref. [ 2] are adopted

The slope limiter and

for this DG scheme. At the upstream boundary,
all Euler characteristics are incoming for super-
sonic flow and therefore their initial values can be
pre-determined. Otherwise, at the subsonic
downstream boundary, only one characteristic is
incoming and thus one physical condition must be
imposed™ . In the present study, the downstream
velocity specified by the Rankine-Hugoniot condi-
tion is retained to maintain the shock stationary.
Other variables are extrapolated by using the in-
terior adjacent values. Finally, the coupled sys-
tem (1) can be written in semi-discrete form
LU/dt) = R (U), which is resolved by the
Runge-Kutta time integration. The time step A¢

is computed as'®

_ 1 AxCFL
(b+1D? | u| +a/Ma+p/Ax

where CFL is
(CFLL).

At

Courrant-Friedrichs-Lewycondition

2 BURGERS EQUATION

An explicit modal DG scheme is first devel-
oped for the Burgers equation

I ou_ Pu
dt ”ax /1(721,‘

with exact solution

(ulfur)

1+exp(Cuy—u ) (x—st))/(2p)

:u|+u,
2

ulx,t)=u,+

N

where u, and u, are the fixed boundary values. In
this model equation, the auxiliary unknown S=
IT = —pdu/dx only is set to resolve second-order
derivative, and p is assumed constant. The varia-
bles u and S are numerically approximated as U,
and S,. The LxF flux is selected for solving the
boundary integral of nonlinear term (u?/2) with
the coefficient C=max(u~ ,u" ). The central flux
is applied for the remaining boundary integral to
find U, and S, in weak formulation. The limiter
proposed in Ref. [ 2] and orthogonal Legendre ba-
sis functions are used for calculations. The linear
element and first-order Runge-Kutta time integra-
tion are used to resolve L(Jdu/dt) =R(u). Ele-
ments are equally spaced in computational do-
main. The NCCR model for the Burgers equation
is also implemented into the DG scheme via an it-
erative method. The values IT at elemental inter-
faces are obtained via the iterative method. For
positive and negative IT

II,., =arcsinh(I, (1 +1II,))

- I - sinh(IT,)
Iy =—F=1"—= ) =——=—"-
T B 1,
where the caret " =" over a symbol represents a di-

mensionless quantity in the ratio of the stress to
the pressure.

Figs. 1—2 show computational results of the
Burgers equation with N = 200, Ax = 0. 04,
CFL=0.25, and ¢ =0. 1. In Fig. 1, the DG NS
results give good agreement with exact analytic
solution, and show the effect of the NCCR model
in computational results. Fig. 2 presents the nor-
mal stress IT between the NS and NCCR models.

1.04 ", — Exact solution NS
08t o DGNS
06} & - DG NCCR
04} )
02}
2 00
02t
-04 |
0.6
-08r
-1.0f

b
1

-20 -15 -1.0 -05 00 05 1.0 15 20

x
Fig. 1 Shock structure profiles of velocity with NS and

NCCR models
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Fig. 2 Values of shear stress IT with NS and NCCR

models

3 EXTENSION TO NSF AND CON-
SERVATION LAWS WITH NCCR

The NCCR model for the conservation laws
developed on the basis of the moment method
proposed in Refs. [7-8] is implemented into the
DG scheme. Initial shear stress and heat flux in
the NCCR model are computed by the values IT
and Q at elemental interfaces from the NSF model
N,
b
_ Q _ N Jiiner (SWU))
PTG P VT

1
PrEcT/AT’

The NCCR model is expressed as
IIq (cR) = (T + DI,
Qq(R) =UT+ DQ,

= 5= (S

. N,
Qo

where e=

R*=1.50"+Q".

R, = %arcsinh [edl, + DR,

For positive and negative IT and Q. we have

Qn-l :le :Q() — _ ﬁ() _
., O, I, 7" q(R,)—II,
Q _ (ﬁu +A1)QO
nt+1 q(CQ,,)

In these expressions, II, and Q, are given by

the equations

. aresinh(eR I, - 7arcsinhEcRo)Q0

H ’ -

! R, Q cR,
Solution of iterative method for NCCR equa-

tions is considered converged when | R, — R, | <<

107° . The converged values at the iteration (n+

1) are then embedded back into the DG scheme

via the following calculations

I

Niﬁuﬂ , Q= %Wﬂ
8 8

4 COMPUTATIONAL RESULTS

Upstream boundary values are set with p=
u=p=T =1 at initial condition, and are main-

The Ran-

kine-Hugoniot conditions are used to compute

tained in whole computed procedure.

downstream boundary values. A computational
domain 602 is used in all cases, covering the en-
tire shock structure. The Maxwellian monatomic
gas with s=1.0, ¢=1.0138, Pr=0.75, CFL=
0.5, and Ax=0. 2 are used for all simulations.
Steady state solution is reached when the RMS
norm of the density is below 107°. The linear ele-
ment and first Runge-Kutta method are selected
for all simulations. Computational results are
normalized based on quantity such as in case of
the density p= (0 pupsrean )/ (Paownsiream — Pupsiream )«
The simulation results of the cases Ma =5
and 8 are presented in Figs. 3 —5. For the NSF

model, the results agree well with the exact ana-
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Fig. 3 Shock structure profiles at Ma=75 with NSF and
NCCR models
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Fig. 4 Shock structure profiles at Ma=28 with NSF and

NCCR models
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lytic solution. The difference between numerical
results of the NSF and NCCR models is shown in
Figs.3—4, and the DG NCCR results give good
agreement to the finite volume method (FVM)
Fig. 5
shows numerical results of heat fluxes and shear
stresses between the NSF and NCCR models.
Fig. 6 presents the normalized density profiles at
various Mach numbers with the NCCR model.

NCCR results in a previous work-"*,

_45 -
. 307 .
=
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Fig. 5 Computational heat flux and shear stress at

Ma=5 and 8 with NSF and NCCR models
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Fig. 6  Normalized density profiles at various Mach

numbers with NCCR model

S CONCLUSION

An explicit modal DG scheme has been de-

veloped for simulating the shock wave structures.

The mixed DG scheme based on the idea of adding
auxiliary unknowns is employed in spatial discret-
ization of the Burgers, NSF and NCCR equa-
tions. The proposed scheme is limited to the one
dimensional problem for simplicity, but it can be
readily extended to the more complicated multi-

dimensional situations.
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