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DAMAGE MECHANISM ANALYSIS OF 2D 1X1 BRAIDED
COMPOSITES UNDER UNIDIRECTIONAL TENSION
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Abstract: Coupling with the periodical displacement boundary condition, a representative volume element (RVE)
model is established to simulate the progressive damage behavior of 2D 1 X1 braided composites under unidirection-
al tension by using the nonlinear finite element method. Tsai-Wu failure criterion with various damage modes and
Mises criterion are considered for predicting damage initiation and progression of yarns and matrix. The anisotropic
damage model for yarns and the isotropic damage model for matrix are used to simulate the microscopic damage
propagation of 2D 1 X 1 braided composites. Murakami's damage tensor is adopted to characterize each damage
mode. In the simulation process, the damage mechanisms are revealed and the tensile strength of 2D 1X1 braided
composites is predicted from the calculated average stress-average strain curve. Numerical results show good
agreement with experimental data, thus the proposed simulation method is verified for damage mechanism analysis
of 2D braided composites.
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INTRODUCTION

Weight reduction has a very special and im-
portant meaning for modern aircraft structure.
Currently, the extent of fiber-reinforced compos-
ites applied in aircraft structures has become one
of the most important targets making the ad-
vancement of modern structural design. As a kind
of new and lightweight textile material, braided
composites have tremendous potential applica-
tions in the aeronautics and astronautics indus-
tries. Besides all the advantages of the conven-
tional laminated composites, braided composites
have even better structural integrity, higher fa-
tigue and impact resistance and lower production
costs. Because of these broad potential benefits,
braided composites are subjected to special con-
cern now. Before braided composites are used in

primary loading-bearing structures, a rational
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characterization of their mechanical properties is
essential.

The spatial configuration of the braiding
yarns is complex, but the microstructure of the
composites shows a good periodicity. Thus, the
mechanical properties of composites structures
are often investigated through a representative
volume element (RVE). Thus far, theoretical
analysis and finite element method have been
widely applied. Theoretical analysis is based on
either iso-strain or iso-stress assumption. Aggar-
wal et al'"® proposed an analytical model to pre-
dict the in-plane stiffness and tension strength of
2D braided composites. In their model, the yarn
undulations and inter yarn gaps were considered.
Byun" introduced an analytical model to deter-
mine the three dimensional elastic properties of

2D flat braided composites using a volume avera-
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ging technique. Masters et al'" investigated the
mechanical properties of 2D triaxial braided com-
posites experimentally; and then they used four
different models: Laminate model, laminate cor-
rection model, diagonal brick model and finite el-
ement model to predict elastic constants respec-
tively. Overall the finite element model provided
the closest agreement to experimental results.
Quek et al® first introduced the effect of initial
micro-structural imperfections to the analytical
model for the calculation of elastic stiffness of 2D
triaxial braided composite. Some other research-
ers also have done much work on the effective e-
lastic properties prediction of braided compos-
ites"®%7,

Although theoretical analysis is simple to im-
plement, it can only yield the elastic constants
but is difficult to exhibit the accurate micro stress
distribution and the damage characteristics of the
braided composites. On the other hand, the finite
element method can overcome these limitations
existing in the theoretical analysis and provide
more information on the damage and failure char-

acteristics. Therefore, besides the investigation

[10-12]

on the stiffness properties" , the strength and
damage properties of braided composites have
been received more attention by using the finite
element method"*?!,

Potluri and Manan'®! presented a RVE mod-
el with lenticular tows cross-section to compute
the stiffness and strength of 2D 1 X 1 braided
composites based on linear analysis, however, the
study on damage propagation in the composites

1“4 employed a bot-

was not reported. Tang et a
tom-up multi-scale finite element modeling meth-
od to simulate the progressive failure behavior of
2X 2 braided composites. Quek et al”"*™ explored
the compressive response and failure of 2D triaxi-
al braided composites experimentally and found
that the dominant failure mechanism of the com-
posites was the buckling of yarns. A RVE model
was established to predict the effective stiffness
and strength of the braided composites subjected

[17-1

to compression load. Song et al'''® took an ei-

genvalue analysis of RVE of the 2D triaxial brai-

ded composites, and then selected the first eigen-
mode as the initial imperfections to simulate the
compressive behavior of the composites. Li
et al'™ proposed a RVE that involved the inter-
face damage of yarns to predict the progressive
damage evolution of 2D triaxial braided compos-
ites under unidirectional tension. The numerical
results for stiffness and strength agreed well with
the experimental data. In addition, the damage e-
volution simulations of 3D braided composites
were performed in Refs. [20-227].

It is seen that much research has been done
on the damage simulations of 2D triaxial, 2D 2 X
2 and 3D braided composites, but little attention
has been paid to strength prediction and damage
mechanism analysis of 2D 1 X 1 braided compos-
ites. In this study, a RVE-based finite element
model, which truly reflects the microstructure of
braided composites, is established. Coupling with
the periodical boundary condition, the RVE is
presented to simulate the damage propagation of
2D 1 X 1 braided composites under unidirectional
tension. Tsai-Wu and Mises failure criteria are
considered for predicting damage initiation and
progression of yarns and matrix, respectively.
The whole process of damage initiation, propaga-
tion and catastrophic failure is carried out and the
damage mechanisms in the process are revealed in

detail.

1 MICROSTRUCTURE ANALYSIS
AND RVE MODEL

For 2D braid comprises, three common brai-
ded architectures are 1 X1 braid, 2X2 braid, and
3X 3 braid. In 1X1 braid each yarn crosses over
and below one other yarn, in 2X 2 braid each yarn
crosses over and below two yarns, and in 3 X 3
braid each yarn passes over and then above three
other yarns. In addition to the braiding yarns,
axial yarns are often inserted for dimension stabil-
ity and improve the mechanical properties in the
longitudinal direction; this type of braid is called
triaxial braid™®!. The braided architecture of a 2D

1 X1 braided composite is depicted in Fig. 1. For
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Braiding yarn
direction

Longitudinal
direction

RVE

Fig.1 2D 1X1 braided architecture

clarity, the matrix pockets are removed in Fig. 1.
The angle between braiding yarns and the longi-

tudinal direction, « , is called braid angle.
1.1 Basic assumptions

As a result of the repeating motion of yarn
carriers, 1 X1 braided composites have the smal-
A RVE,
Fig. 1, is used to represent the 1 X1 braided com-

lest repeating structure. shown in
posites in the present study. The following as-
sumptions are made in order to establish the mi-
cro-RVE model: (1) The cross-section shape of
braiding yarns is flat hexagonal, as shown in
Fig.2; (2) the braiding yarns have the same
structural parameters of width W, thickness ¢;,
and cross-sectional area A; (3)the yarns are uni-
form along the yarns’ direction; and (4)the small

gaps between the adjacent yarns are negligible.

Z

/4

Fig. 2 Cross section sharp of braiding yarn

1.2 Structural parameters of RVE

From the cross section sharp of braiding yarn
shown in Fig. 2, we have

W =2a-+10 @b

A=(a+ b, (2)

Fig. 3 shows the structural parameters on the

cross section of 1 X 1 braided composites in the
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Fig. 3 Schematic section in yarn direction of 1 X 1

braided composites structure
braiding yarn direction. Note that some symbols
used in Fig. 3 are slightly different from Fig. 2,
namely, the width W of braiding yarn displayed
in Fig. 2 is changed to P, in Fig. 3, and geometric
parameters a and 0 in Fig. 2 are changed to a, and

b,. Their relations are as follows

P, =W/sin2q 3
a, =a/sin2a 4)
b, =b/sin2q (5

Make W,., W, and T represent the width,
length and thickness of RVE, respectively, and
they can be calculated by

W, =W/cosa (6)
W, =W /sina «P)
T=2t,+1, ®

where ¢,, is the thickness of pure matrix layers.
Fig. 4 gives the comparison of schematic dia-
gram of actual intersecting braiding yarns and
surface configuration of RVE. It is seen that the
spatial configuration and the mutual squeezing of
the yarns are validly reflected in the RVE model.

s :

5 ol ol
ey !
I 1 I 1

W, 7.
(a) Schematic diagram of (b) Surface configuration

intersecting yarns of RVE

Fig. 4 Comparison of schematic diagram of intersec-
ting yarns and surface configuration of struc-

tural RVE
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2 FINITE ELEMENT MODEL

2.1 Periodic boundary condition and finite ele-

ment meshing

2D braided composites are periodic structures
consisting of periodic array of RVEs, so the peri-
odical boundary conditions should be applied to
the present damage simulation model which is
based on the RVE model. That is to say, the pro-
gressive damage process of 2D braided composites
is periodical. Displacement continuity conditions
and traction continuity conditions must be satis-
fied at the opposite boundaries of the neighboring
RVEs. Consequently, the unified periodical dis-
placement boundary conditions proposed by Xia
et al’®”, which guarantee the two continuities
conditions, are adopted.

In finite element software, periodic boundary
condition is carried out by setting the linear con-
straint equations between master surface nodes
and slave surface nodes. As shown in Fig. 5.
three coordinate planes (x; = L;) are defined as
master planes, and the nodes on them are called
master nodes. Similarly, coordinate planes (x; =
0) are slave planes and nodes on them are called
slave nodes. The vertexes A, C, H are defined as
reference points on which the displacement
boundary condition is applied. The linear con-
straint equations between master nodes and slave
nodes are expressed as

uf =ul +ul

ut =ul + uf 1 =2,y.2 9
ul =ul 4 ul
G

Fig. 5 Periodic boundary conditions

In order to satisfy the periodicity, the node
distributions in the opposite paired faces of RVE
should be identical. The meshed map method is
used in the surface mesh and the periodic bounda-
ry conditions are imposed on the paired nodes by
FORTRAN pre-compiler code.

Due to the complexity of the microstructure,
3D solid tetrahedral elements are adopted for the
meshing of braiding yarns and matrix. The inter-
faces between the yarns and matrix are assumed
to be perfectly bonded, that is to say, the damage
mechanism of the interface debonding is ignored.
Finite element meshes of the braiding yarns and

the whole RVE model are shown in Fig. 6.

.’

z Y
L o

(a) Yarns

(b) RVE

Fig. 6 Finite element meshes

2.2 Material properties of constituents

2D braided composites are composed of the
braiding yarns and the resin matrix pockets. The
material response of the constituents influences
the macro-mechanical behavior of the composites.
In this work, the resin matrix is assumed to be
isotropic; the braiding yarns containing thousands
of fibers and matrix are modeled as spatially un-
dulating and transversely isotropic composites in
local material coordinate system. The stiffness
and strength properties of the braiding yarns can
be calculated using the rule of mixture given by
Chamis'®!. For the material orientation definition
of every element in the braiding yarn, local L axis
must follow the path curve, as shown in
Fig. 7 (a), and the coordinate system of a yarn is

given in Fig. 7 (b).
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(a) Material orientation

Z03)

7?2

L(1) #

(b) Coordinate system

e=H(D)o 13
H(D) can be derived by the notion of energy
identification, namely
H(D) =MD" :C, :M(D) (14)
where C, is the undamaged elastic tensor.
This, in turn, leads to the damaged stiffness
matrix, which is the function of the undamaged
elastic constants and the principal values of dam-

age tensor, and is given by Ref. [27] as
C(D)=H '"(D)=

Fig. 7 Material orientation definition and coordinate

system of braiding yarn

2.3 Constitutive relation of damaged material

The damage of yarns and matrix can be char-
acterized by Murakami damage model. The dam-
age model uses three principal damage variables
to express the damage stations, which is ex-

pressed ast™
D= EDin, X n;

where D; and n; are the principal value and princi-

pal unit vector of damage tensor, respectively.
The damage variables D; mean the effective
area reduction caused by micro-cracks and voids,

and are given by

A, — AT
D"*iA.

[

1=L,T.Z 1D

where A;and A are total load bearing area and
undamaged area, respectively.

The damage variables range from 0 to 1. 0 ac-
cording to damaged station. D;= 0 represents the
initial undamaged materials and D, = 1 implies
the completely damaged materials.

The effective stress is defined as
o = [U=D) 'ote—D) ' J=M(D)s  (12)

where ¢" is symmetric and M(D) the transforma-
tion matrix.
The constitutive equation of the damaged

material is given by

diCn
didC,  d3C,, sym
did,Cs ded,Coy d5Csy
0 0 0 diC
’ 0 0 0 daCs
0 0 0 0 0 di1Cas
(15)
where dy =1—=D.,dr=1=Dr.d;=1—Dz.dr; =
TG e = )
(%)y sand C; is the component of undam-

aged stiffness tensor.

After damage occurs, the material is still
considered to be elastic and the damage response
of the integration points is governed by the stiff-
ness matrix reduction via updating damage varia-

bles given in Eq. (15).
2.4 Damage evolvement model

Damage initiation and damage evolution can
be simulated by damage mechanism, which con-
sists of failure criteria and damage evolution law.
2D braided composites comprise three phases: Fi-
ber yarns, pure resin matrix and interface.
Therefore, the failure mechanism contains three
types: Yarn breaking, matrix cracking and inter-
face debonding. In the present study, the damage
mechanism of interface debonding is not consid-
ered.

Tsai-Wu criterion, implemented to predict
the failure initiation and progression of braiding
yarn, is given by

fl)—r,=0 (16)
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where 7, is the damage threshold of braiding

yarns. The expression of f(s) is given by

f()=F 0t +Fupos+Fsoi +Fuoss+ Fssoty +
Feoly T2F 150100 +2F 30105 +2F 56005 1

F10'1+F262+F363 (17)
In Eq. (17)
_ 1 .1
Fi=gx Fe=Fo=x g
1 1

1
Fl)iFlgi \/FllFZZ ’FZ'ﬁ 7?\/F22F33
1 1 1 1
F,=— ,F,=F. — 18
X, Xe Y,V (18

where Xrand X are the longitudinal tensile and
compressive strengths of yarn; Y, and Ycare the
transverse tensile and compressive strengths; S;,
and S,; are the in-plane and out of plane
strengths, respectively.

The Mises criterion is adopted as matrix fail-
ure criterion, namely

ef
Om

—r, =0 (19

Om
where ¢}, is the tensile strength of matrix, r, the
damage threshold of matrix, and ¢< the effective
stress of matrix and given by

O'Pni :(1/2(0'1 *0'2)2 +(O‘1 *0'3)2 +(O‘3 *62)2 +

3(1’%2_‘_‘[%3"—2’%1))1/2 (20)
The damage variables of yarns in Eq. (15)
[28]

can be computed by
D,=1—e""P i=L.,T.Z (2D
where m is a softening parameter.
Damage variable of matrix has the similar
form as Eq. (21), with D, = D;= D,.
The damage threshold r; is initially set to 1. 0
to represent initial elastic deformation and increa-
ses as damage accumulates analogous to plasticity

model. It is defined as

ri= i i=f.m 22)
Damage accumulates and propagates when
i~ (23)
e ©

In Eqgs. (22,23), j is the index of strain incre-
ment step and ¢ the strain rate.

It is known that Tsai-Wu failure criterion is

mode-independent. It identifies the failure pro-
gression, but cannot identify the failure modes of
each yarn element. Thus, six indices, H,; (i =
1—6), are defined to identify the failure modes of
the failed elements, shown as

H, =Fo5,, + Fii6t,.H, =Fy05 + Fy0%,

H, =F;05; + Fs05: . Hi = F 0% 24)
H: =Fi.6}, s Hy = Fgs6°»

At failure, the maximum one of the six indi-
ces H;(i =1—6) is assumed to identify the domi-
nant failure mode. Failure index H,indicates yarn
L breaking, H, and H, indicate transverse matrix

cracking, and H,, H; and H; indicate T-Z , L-Z

and L-T shear failure modes of matrix.
2.5 Failure analysis process

The above constitutive theory and progres-
sive damage simulation approach are implemented
into a user defined material subroutine (UMAT),
available in finite element software ABAQUS.
During each strain increment, the stress level and
damage station are calculated at the integration
points of the elements. Once the failure criterion
is satisfied, the stiffness reduction is carried out
by updating the damage variables. The reduced
stiffness is used for further analysis until the final

increment step. Fig. 8 presents the flow chart of

the failure analysis process.

FE model of RVE

|Periodic boundary conditionl
)

4—| Increment displacement AU |~7

Updating stiffness matrix |

)

|Solve equilibrium equationl

N
Convergence

Updating damage
variables

Calculating stress of
integral points

Satisfying failure
criterion

Fig.8 Flow chart of failure analysis
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3 RESULTS AND DISCUSSION

In order to verify the damage simulation
method and reveal the damage mechanism of 2D
braided composites, the tensile experimental re-
sults of specimen CE3 from Ref. [2] are selected
for comparison study. Tensile tests of specimen
CE3 are carried out on Instron Universal Testing
Machine at a crosshead speed of 1 mm/min and at
room temperature. The elastic properties of the
component materials, including T300 carbon fiber
and epoxy resin, are listed in Table 1. The tensile
strength of T300 fiber is 2 480 MPa; the tensile
and shear strength of epoxy resin are 64 MPa and
110 MPa. Table 2 gives the geometrical parame-
ters of specimen CE3, used to establish the RVE
model. The width of braiding yarn is divided into
b=1:

three parts and a : 2 is assumed in the

present study.

Table 1 Elastic properties of fiber and matrix

Material E,/GPa E;/GPa E,;/GPa Gr+/GPa V1

T-300 230 40 24 14.3 0. 26
Epoxy 3.5 3.5 1.3 1.3 0. 35

Table 2 Geometrical parameters of specimen

Geometrical parameter /mm
Specimen a

w g ty T

K V:/%

CE3 1.04 0.15 0.34 0.92 17 0.79 44.6

According to the meshing requirement of
FEM, element size needs to keep small at the ed-
ges of the intersecting yarns and resin matrix
pocket. In this study, the FEM model consists of
8 438 nodes and 42 136 linear tetrahedron ele-
ments. Relatively fine meshing size is required to
obtain more accurate stress distribution, especial-
ly near the boundaries of RVE. The mesh is
checked for distortion and a mesh sensitivity anal-
ysis is performed. Note that the meshing size of
the model in this study is fine enough and suffi-
cient to guarantee the convergence of the solu-
tions.

The small gaps between the adjacent yarns

existing in the specimen are not considered in es-

tablishing the RVE model. Since the fiber-volume
fraction of the composites will be too large when
the actual fiber-volume fraction of yarn is adopt-
ed, thus the revised method proposed in Ref. [ 6]
is used here, namely

__w
K W+g’€

The softening response relies heavily on the

(25)

manufacture architecture and test conditions,
which can lead to very scattered results. Conse-
quently, the choice of softening parameters for
each mode is still an open issue. As pointed out in
Refs. [28-29], smaller values of m make the ma-
terial behavior more ductile whereas higher values
make the material behavior more brittle. In pres-
ent study, m, =5, m,=0.5 and m; =0. 5 are se-
lected as softening values for yarns damage of
longitudinal fiber breaking, transverse matrix

cracking, and shear failure, respectively.
3.1 Stress-strain curve

To obtain the macroscopic stress-strain curve
of the material, the homogenization approach is
employed in this study. The heterogeneous com-
posites in the micro-scale are considered a homo-
geneous material in the macro-scale. The average
stresses and strains in a RVE are defined by™"

o, =v|o,av. o =Lfe v o
Vv \%
where V is the volume of RVE,

Aggarwal et al®®” studied the mechanical
properties of 2D braided composites with small
braid angles of both cut- and uncut-edge configu-
rations. Cut-edge specimens from a large com-
posite panel lose fiber continuity at the edges.,
which affects the tensile behavior significantly.
Because the edge effect is not considered in the
present RVE, the applicability of the present
damage model is restricted to the cut configura-
tion. Thus, only the experimental result of cut
specimen CE3 is picked up from Ref. [2].

A comparison of experimental and simulaton
stress-strain curves is shown in Fig. 9. Note that
the experimental data shows nonlinear constitu-

tive character to some extent before sudden brit-

tle failures, but the simulation results show al-



324 Transactions of Nanjing University of Aeronautics & Astronautics

500 r _g— Simulation
—o— Experiment

400

300

Stress / MPa

200

100

0 1 1 1 J
0.0 0.5 1.0 1.5 2.0

Strain / %

Fig.9 Comparison of simulation and experimental re-

sults under uniaxial tension

most linear constitutive relationship until failure.
This can be attributed to the initial manufacturing
defects, such as micro-cracks in yarns and voids
in matrix, but not considered in the RVE model.
After reaching the maximum stress, the predicted
curve decreases rapidly to a low plateau stress and
the specimen loses the load carrying capacity.
The predicted tensile strength and failure strain
are 484 MPa and 1. 0% and are consistent with
the experimental strength 470 MPa and failure
strain 1. 12%, indicating that the damage modes
applied to the yarns and matrix are reasonably ac-
curate. The extended unloading observed in the
computed stress-strain curves is most likely a nu-
merical artifact, as the experimental specimens
most likely have a more brittle fiber failure, while
the computed curves have a more gradual unloa-

ding to promote numerical stability"'’,

3.2 Damage propagation simulation

Fig. 10 shows the element damage percentage
of braiding yarns and matrix corresponding to the
stress-strain curve of the 2D braided composites.
The element damage percentage is calculated via
dividing the damaged element number by the con-
stituents’ element number of RVE. In the simu-
lation process, the T-Z damage elements are very
few, for simplify, this damage mode is not pres-
ented in Fig. 10.

With the increment of tensile loading, vari-

ous failure modes occur, promote and couple with

600 ~ .
—— Stress-strain curve

—=— Yarn L breaking damage 11.0
500 | —— Yarn L-Z shear damage
—e— Yarn L-T shear damage
—*— Yarn 7 damage 40.8
400 |—— Yarn Z damage
—e— Matrix damage

é‘ 10.6
300
& 200 +

100 | 102

1
=)
N
Percentage of damaged element

() Vosasbas st o0
00 0204 06 08 10 12 14 16

Strain / %
Fig. 10 Percentage of damage modes of yarn and ma-

trix elements corresponding to tension process

each other gradually. The whole progressive
damage process can be divided into three periods.
(1) Damage initiation period (0. 80% < e <C
0.92%). Ate=0.80%, yarn Z damage mode is
initially detected in the undulate zones of the
yarns and damage initiates in the matrix pockets
at e=0.88%. Overall, in this period, the ratio of
failure elements is fewer than 2%, which has less
influence on the macro stress-strain curve. (2)
Damage accumulation period (0. 92% << e <<
1.02%). A variety of damage modes occur and
accumulate continuously in this period, and the
slope of the tensile stress-strain curve begins to
decrease. At e=1. 00%, the stress-strain curve
reaches the peak value, defined as the strength of
the composites. At this time, the L breaking and
L-T shear damage element
4.85% and 9. 57% . respectively. (3) Damage

propagation period e =1. 02%. All the damage

percentages are

modes spread rapidly; especially the L breaking
and L-T shear damage modes of yarn and matrix
damage, which lead to a sudden drop of the
stress-strain curve. It is obvious that they are the
main failure modes and control the mechanical re-
sponse of the braided composites. Because of the
failure of yarns, matrix pockets bear the greater
amount of loads; therefore, the failure element
percentage of matrix ascends faster than other
damage modes. All of these analysis results agree
well with the experimental findings in Ref. [2].

Since the main failure modes of the braided
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composites are the L tensile breaking, planar L-T
shear damage of yarn and matrix damage, it is of
great significance to analyze the damage distribu-
tion and expansion trend. Fig. 11 depicts the ex-
pansion of L tensile breaking and L-T shear dam-
age in one-directional braid yarns and matrix
damage under different strain increments. It is
found that these two kinds of damage occur ini-
tially in the undulate zones where two directional

yarns cross with each other; and then damages

develop rapidly along the braiding yarn direction.
The damage value equalling to one in the L break-
ing elements indicates that this damage is seri-
ous. In contrast, just small parts of L-T shear
damage elements are displayed with the damage
value of one. Therefore, these materials have fur-
ther load carrying capacity. It is exhibited that
the matrix damages, developed in the matrix re-
gions neighboring yarns intersecting zones, ap-

pear later than yarn damages.
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Fig. 11 Damage evolution

4 CONCLUSIONS

(1) The spatial configuration and the mutual

squeezing of the yarns are validly reflected in

RVE.

(2) The main failure modes of the 1 X1 brai-
ded composites with small braid angle under ten-
sile loading are the L tensile breaking, planar L-T

shear modes of yarn and matrix damage.
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(3) By adopting the average method, the

stress-strain curve is simulated, from

which the ultimate strength and failure strain are

obtained. The numerical results show good agree-

ment with available experimental data, thus vali-

dates the effectiveness of the damage simulation

model.
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