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Abstract: The non-linear behavior of continuous fiber reinforced C/SiC ceramic matrix composites (CMCs) under
tensile loading is modeled by three-dimensional representative volume element (RVE) models of the composite.
The theoretical background of the multi-scale approach solved by the finite element method (FEM) is recalled first-
ly. Then the geometric characters of three kinds of damage mechanisms, i. e. micro matrix cracks, fiber/matrix
interface debonding and fiber fracture, are studied. Three kinds of RVE are proposed to model the microstructure
of C/SiC with above damage mechanisms respectively. The matrix cracking is modeled by critical matrix strain en-
ergy (CMSE) principle while a maximum shear stress criterion is used for modeling fiber/matrix interface debond-
ing. The behavior of fiber fracture is modeled by the famous Weibull statistic theory. A numerical example of con-
tinuous fiber reinforced C/SiC composite under tensile loading is performed. The results show that the stress/
strain curve predicted by the developed model agrees with experimental data.
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INTRODUCTION

In the past years ceramic materials have be-
come increasingly important because these mate-
rials combine the advanced behavior of ceramics
such as high strength, high strength at elevated
temperature and wearability with a non-brittle
stress-strain behavior, However, ceramic com-
posites are energetically prone to the formation of
multiple matrix cracks prior to complete laminate
failure. This, combined with the inherent com-
plexities and stochastic nature of failure in non-
homogeneous materials, makes the modeling of
ceramic matrix composites (CMCs) quite diffi-
cult. Models have been presented by several au-
thors to predict the critical stress at which the

[1-3]

matrix cracks initiates"'™ . In order to explain the

Website of on-first: http: / www. cnki. net/detail/32. 1389. V. 20121226 .,1652. 011. html(2012-12-26

Article ID:1005-1120(2013)04-0328-07

stochastic feature of matrix cracking, Crutin et
al. performed the study based on the statistic
method™™. Trying to simulate the whole re-
sponse of ceramic composites, Solti"* performed
the study based on the shear lag method. Howev-
er the shear lag method is too simple to calculate
the microscopic stress field exactly. In addition to
the model proposed by Solti, other models based
on the continuum damage mechanics were pro-

0] which were however experiential.

posed™”

In this paper, a comprehensive model rela-
ting the macro and micro response of unidirec-
tional fiber toughened CMCs is proposed under
tensile loading. The model describes the longitu-
dinal strain response of C/SiC composite through-
out the entire tensile test, taking into account all

relevant damage. The mechanisms governing the
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non-linear response of the composite are the ma-
trix cracking, fiber/matrix interface debonding
and fiber fracture, The model is based on the

[11-13]

multi-scale process and is solved by the finite

element method(FEM).

1 FEM-BASED
APPROACH

MULTI-SCALE

Considering a composite wherein the micro-
structure is periodically distributed in the axis di-
rections (Fig. 1), where the representative vol-
ume element (RVE) used to construct the period-
ic array is highlighted. In the framework of Su-
quet 'Y, the displacements are decomposed as
follows

u =e; X, +u, ivj=1,2,3 (1
where X=(X,,X,,X;) is the macroscopic (glob-
al) coordinate, u=(u;, u;.u;) the displacement,
e; the global strain, u, the fluctuating displace-

ment.
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Fig.1 Composite material with periodic microstructure

The global strain and stress are defined as

the average of the local strain and stress within

RVE, shown as

.| 1
€ —VJnsijd"U,a,j —VJQg,-jdv 2

If the effect of body force is ignored, the vir-

tual work principle has the following form
J 00 ;dv :J T du,ds (3
0 st

where  stands for the domain of RVE, and S, the
stress boundary.

For the linear material, the constitutive
equation is

Oij :Eijklek[ 4)
Substitution of Eq. (4) into Eq. (3) gives

that
J E[ijSk[é\eide:J T,»Su,»ds (5)
0 s
The Cauchy infinitesimal strain tensor is de-
fined as
&) =y Gy + 2 (6)
Substitution of Eq. (1) into Eq. (6) gives that
€ij :g;j JF&,‘,‘ (7)
where
éz} :%(&1,+;€j,) (8)

Substitution of Egs. (1,7) into Eq. (5) gives
that

J (Euende; + Ejuende; + Ejueude; +
9]

Ejéudddv=| (Toe,X, + Tu)ds (9
S

The global strain keeps constant in the
process of deformation. Therefore the variation of

e; is zero. Eq. (9) becomes
J (Egkzg/e[é\g ij + E,i,-/lz&;kzr?&; ij ) d‘Z} :J T,(?l; I'dS
Q s

(10)
The domain is discretized into a set of ele-
ments and the shape function ‘N” is defined on

each element. Then Eq. (10) becomes

ZJ(Q (E,]Mé M(?é,-j + E;jklgk,6é ij ) d"U -

ZJ T 6u,ds (1D

e ‘s

Then the fluctuating displacement and varia-
tion of fluctuating displacement are approximated
by linear combinations of their nodal values and

shape functions, namely

W, =N ul, Su, =N"8u’ 12)
Then the fluctuating strain becomes
0, =4 N+ Nt (13)
where
NG
Ny, =28 (10
’ dx;

Combination of Egs. (11—13) gives that

EJvn (E’jk’gk‘ %(N{)/ak;izp + Eljk[é}:[ %k
>

N*sut ) do +

e

Eu (% N ag + % N'fk"&?) X

s}

Ntsut + %Naav;f) do —

Do |—
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S| TiNrautds (15)
~ J s

Simplification of Eq. (15) gives that
EP&Zkqui/)a(;lz() + Zg;’/cm;paﬂf -

DT, ul (16)
where
kK kqip :J qu,’/, d'U ( 1 73)
‘a
()Ck[z/) = %J‘ (E(;JUZ\]Z + Ej,k/N{)J ) d‘U (17b)

e}

‘T, :J TN’ ds (170)
‘s

1 ) 1 .. .
qui/: :ZEZMN%‘N{)J' + IE(iflkN(f! NP] +

% < NUN?, + %E;MN?,FN.@

If the periodic boundary conditions are em-

(17d>

ployed, the relation between global strains and
nodal values of fluctuating displacement are given
by the solution of Eq. (16), which has the follow-
ing form
Ul =KCppne o + UL (18)
where ‘KC,,,., is the component of a four-order
tensor and decided by the material properties and
the shape of element, ‘Uf the component of a two-
order tenser and decided by the stress boundary
conditions.
The integral is performed in each element.

Then global stress becomes

- 1 VE _ VEju (Au +ew)

(19
where ‘% is the average strain of element and de-

fined as

. 1 N
(Ekl :T/J“Q ek,dv (20)
Substitution of Eq. (12) into Eq. (20) gives that
- 1 Ly o Lgp e
tw =, (3 NUat+ g Nar) do—
1 (N pe b 1 p*/ﬂ e b
? 0 Ug +?N/ uj 21)
Then the global stress becomes

o — 2 ‘Y((EUMH/ JF“EZMN{’/?Z;?) (22)

e

Substitution of Eq. (18) into Eq. (22) gives
that

e

\ — S
oy = v (Esuen HE5,NLKC e +

e

‘E5uN’UD (23)
Simplification of Eq. (23) gives that
o5 =Ejuen + T, (24)
where

Eij/e[ = 2 “//(KEijkl +PE(I:]HHIN{‘HPK()‘/HP}\’/) (25)

e

T, =3 VCELNLUD 26

e

Eq. (25) gives the formulation of effective

elastic tenser of material.

2  DAMAGE MECHANISMS AND
MODELING

In CMCs continuous cylindrical fibers are
embedded in a high performance ceramic matrix
which is typically some derivatives (oxide, ni-
tride, or carbide) of silicon, aluminum, titanium
or zirconium. An example is C/SiC CMCs which
embed small diameter carbide fibers into a carbo-
rundum matrix. CMCs exhibit a remarkable in-
crease in toughness compared with their mono-
lithic counterparts.

The degree of toughening exhibited by CMCs
is a function of the strength of the interface, the
frictional of shear resistance within debonded re-
gions and the strength of the matrix and fiber. In
order to describe the train response of CMCs un-
der a tensile test, three damage mechanisms
which are micro-cracking of matrix, fiber/matrix
interface debonding and fiber fracture are em-
ployed in this model. The model consists of a rec-
tangular array of perfectly aligned fibers in a ma-
trix (Fig. 1). The thickness of the interphase be-
tween fiber and matrix is assumed to be negli-

gible.
2.1 Matrix failure

Previous work on unidirectional fiber tough-
ened CMCs has indicated that during tensile
stressing matrix cracks develop into more or less
periodic arrays, with a characteristic spacing.
The proposed model assumes the cracks to be

equidistant and spanning the entire cross section
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of the material. The crack distance L is deter-
mined by the critical matrix strain energy
(CMSE) approach % In general, the CMSE
criterion states that matrix cracking at any strain
level ¢ with the average crack spacing of L and a
fiber/matrix length d (Fig. 2) will occur when
the matrix strain energy is equal to its critical val-
ue, Ugp s 1€,

U, =U.nm @27

Matrix crack é Matrix

Debonding < __d__ Fiber

Matrix crack ?

Matrix

L

Fig. 2 Definition of L and d in RVE

CMSE, U, , is defined as the strain energy
in the matrix at the critical composite stress, o.
That means U,, keeps constant and equals to U,
at any stress lever which is greater than g.,.
However, the initial crack spacing, L., at ¢ =
6. must be determined for the CMSE failure cri-
terion. For the current analysis, the initial crack
spacing is chosen such that the strain energy of
the damaged configuration is "close” to the strain
energy in the undamaged configuration U,,,. For
example, the deviation is three percent (i. e.
Uin= 0.97U,). U,y is the matrix strain energy
calculated by

Unw =Ly * So * E, * (‘;:—) (28)

where S, is the area of matrix, E, the elastic
modulo of matrix, E,. the elastic modulo of com-
posite, which is

E.=vE +v,.E. (29)
where v; » v, are the volume fraction of the fiber
and matrix. For the present study, a constant de-

viation of one percent is used for all cases, that is

Uim = 0.99U 0 (30)

2.2 Interface debonding
As matrix cracks form within the composite,
they can also induce interface debonding. These

usually result from the large stress fields near the

matrix crack-tip. Since the debonding is in reality

a crack which propagates along the fiber/matrix
interface, the extent of debonding can be esti-
mated using classical fracture mechanics tech-

Le18l - However, to avoid the complexities

niques
which accompany such approaches, a simple and
more common approach is to employ a maximum
stress criterion in which the debonding occurs
whenever the interface shear stress exceeds the
interface,

ultimate bond strength of the

a1 The parameter . is assumed to be a
material constant, and, if known, the extent of
interface debonding can be determined by ensu-
ring that the maximum shear along the interface
never exceeds this maximum amount, i. e.

Ti (X)) max = Tul 3D
The shear stress in the debonding region is typi-
cally assumed to be constant and governed by

Coulomb friction with magnitude z; %!,

2.3 Fiber fracture

The percentage of fracture fibers, f, in
CMCs is typically determined using some type of
statistical failure criterion. The most common ap-
proach is to use a two-parameter Weibull distri-

bution like the following.

lefexp{(o_%yn} 1 (32)
where g, is the characteristic fiber strength and m
the tradition Weibull modulus. From Eq. (32), g,
corresponds to a survival probability of 0. 37%3.
The shape and scaling parameters, m and ¢, » may
be determined by fitting empirical data; however,

their solution is somewhat involved since the vari-

ation in f versus ¢ cannot be solved directly.
2.4 Simulation of damage process

The modeling process is divided into four
steps:

(1) Before damage developing, the compos-
ite is represented by a perfect RVE (Fig. 3 (a)).
At this step, the material is elastic, and the glob-
al behavior is described by Eq. (29).

(2) When the matrix cracking occurs and the
interface is perfect, the configuration of RVE is
presented by Fig. 3 (b). At this step, the crack

space is determined by
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U, L) =U.n (33) Table 1 Material property data of C/SiC
i i Material Material
(3) In the presence of matrix cracking and Value Value
partially debonded interfaces, the composite is property property
, , . , E./GPa 230 E,/GPa 116.2
described by a corresponding RVE with a matrix
1t 0.21 Lm 0.24
crack and a partially debonding interface o 0. 40 R/pm 7.5
(Fig.3 (¢)). The crack space and debonding ./ MPa 50 6e/MPa 126. 4
length are determined by m 4.0 o0 /MPa 323

U, (L.d)=Ugqns Tow (Lsd) =14 (34)
where d denotes the debonding length of inter-
face, and r,, the shear strength of the perfect in-
terface.

(4) When d is close to L/2, the configura-
tion of RVE is presented by Fig. 3 (d). In this
case, the behavior of the composite is dominated
by

oi— fev s Efee=0 (35)
where g; denotes the fiber stress while v; the vol-

ume fraction of fiber.

(b) RVE with a matrix crack

(c) RVE with a matrix crack and
a interface debonding

(d) RVE with completely
debonding interface

Fig. 3 Configurations of RVE at each damage state

3 FINITE ELEMENT RESULTS
AND DISCUSSION

The constituent properties used for the simu-
lation are summarized in Table 1. RVE is loaded
by uniaxial tensile stress in fiber direction. The
initial linear elastic behavior ends because of the
crack initiation in the matrix and the debonding of

interface.

When the debonding length is close to L/2,
the fiber fracture occurs. Then there is a reduc-
tion of the elastic coefficients of the fiber. The
experimentally determined points'?* and simula-
ted results are given in Fig. 4, where the range
between A and B is linear because RVE is per-
fect. For higher loading of RVE, matrix cracking
initiates and the interface debonding occurs (B-
C). In the range between C and D, the matrix
cracks saturate because the matrix cannot receive
enough energy from fiber since the interface
debonding. In this range interface debonding is the
only damage mechanism which dominates the be-
havior of the material. As load increases, the in-
terface debonding length approaches L/2 and the
fiber fracture dominates the mechanics behavior
of the composite (D-E). The curves of matrix
crack space and interface debonding length which

are calculated by the model are shown in Fig. 5.

250 = Experiment
Model
200 | .
1 1
1 1
! i i
2 P | :
© 100 - P | l
i i | |
1 1 1 1
1 1 1 1
50 i ; i |
A 'B ! C D E,\
0 L, | i
0.000 0.001 0.002 0.003
£
Fig. 4  Stress-strain predictions from current analysis

along with experimental values

4 CONCLUSION

A FEM-based multi-scale approach is pro-
posed to simulate the non-linear mechanical be-
havior of ceramic matrix composite. The present

results suggest that:
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