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APPLICATION OF ROUGH SET THEORY TO MAINTENANCE
LEVEL DECISION-MAKING FOR AERO-ENGINE MODULES
BASED ON INCREMENTAL KNOWLEDGE LEARNING
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Abstract; The maintenance of an aero-engine usually includes three levels, and the maintenance cost and period
greatly differ depending on the different maintenance levels. To plan a reasonable maintenance budget program.,
airlines would like to predict the maintenance level of aero-engine before repairing in terms of performance parame-
ters, which can provide more economic benefits. The maintenance level decision rules are mined using the histori-
cal maintenance data of a civil aero-engine based on the rough set theory, and a variety of possible models of upda-
ting rules produced by newly increased maintenance cases added to the historical maintenance case database are in-
vestigated by the means of incremental machine learning. The continuously updated rules can provide reasonable
guidance suggestions for engineers and decision support for planning a maintenance budget program before repai-
ring. The results of an example show that the decision rules become more typical and robust, and they are more

accurate to predict the maintenance level of an aero-engine module as the maintenance data increase, which illus-
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trates the feasibility of the represented method.
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INTRODUCTION

As the service cycles and the operating time
of aero-engines increase, their performance will
slowly deteriorate. When the aero-engine’s per-
formance decreases below a certain level, it is not
suitable for subsequent service and must be re-

121 The maintenance of

moved for maintenance
an aero-engine usually includes visual check, per-
formance overhaul and full overhaul, and the ma-
intenance cost is a big part of the airline's expen-
ses and greatly differs depending on the dirfferent
maintenance levels. If the maintenance level is set
to a high level before repairing, it involves a long
maintenance period schedules, high costs budget,
excessive remainder life loss of components, and
the need for more back-up aero-engines, which

will critically reduce the economic benefits of air-

lines. If the maintenance level is set to a low level
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before repairing, the time between maintenance
and operations is shortened, which leads to high
maintenance costs per flight hour and reduces the
safety level of the aero-engine operation™®,
Therefore, to ensure the safe operation of aero-
engines while keeping low maintenance costs, it
is very important for airlines to decide the appro-
priate maintenance level of their aero-engine mod-
ules.

At present, engineers determine the technol-
ogy status of an aero-engine by routinely monito-
ring the performance parameters, and decide on
the appropriate moment for the removal and ma-
intenance of the engine according to the aero-en-
gine's manual and the practical engineering expe-

], In fact, the aero-engine is a complicated

rience
system, and the parameters used in monitoring
are appropriate for the entirety of aero-engine,

while the maintenance level is associated with the
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modules of the aero-engine. The historical data of
aero-engine maintenance levels are huge but de-
centralized, so it is difficult for engineers to de-
cide on the maintenance level from historical ma-
intenance data based on their engineering experi-
ence. Therefore, it is necessary to build an intel-
ligent decision supporting system to provide rea-
sonable guidance suggestions for engineers using
the continuously growing historical maintenance
datal®*,

performance parameters and maintenance level of

In this paper, the relationship of the

the aero-engine modules in historical maintenance
data is studied using the rough set theory, and
the decision rules for maintenance level are mined

by means of incremental knowledge learning.

1 BRIEF INTRODUCTION OF
ROUGH SET THEORY

1.1 Basic definitions of rough sets

Definition 1: The relationship equation K=
(U,C,D,V, f) is defined as a knowledge repre-
sentation system, where U is a universe, C a set
consisting of condition attributes, D a set consis-
ting of decision-making attributes, and C() D=
R, V a set of values of all the attributes, and f a
function f:a(x) —>V,, here x is an object in U(x
€U), a an attribute in C(1 D, a(x) an attribute
value of object x relative to attribute a, and V, a
set of values of the attribute a.

Definition 2;: Assuming B is a subset of at-
tributes R, the formula
IND(B) = {(x.,y) € UXU,VYbe& B,b(x)= b(y)}
is defined as an indiscernibility relation of B,
The universe U is divided into U/IND(C) ={X,,
X,.+,X,} by the indiscernibility relationship of
C, where X, is the ith condition equivalence class
of knowledge representation system. The indis-
cernibility relation of D is similar to that of C,
and U/IND(D) = {Y,,Y,,*,Y,}, where Y, =
(xEU|Dx)=1} (1 = 1,2, ,m)"%,

Definition 3: Assuming B is an arbitrary
subset of attributes C, the formula

IND(9, (X)) ={(X,,X;) € U/IND(B), &
05 (X,) =0s(Xp) )

is defined as the indiscernibility relationship of the
O-decision value of K,
{1/ 32"€U,2"IND(B)x, & D (a) =1} is a B-

classified function of the decision value of K,

where 0 (x) =

which means if two objects = and 2’ belong to the
equivalence class X, (2,2 € X,;), X, meets with
VY, (X;—VY,). The universe U is divided into
{Q,.Q,,*+,Q, ) again by the indiscernibility rela-
tionship of the §-decision value of K, and any in-
compatible system is transformed into a compati-
ble system by this relationship.

Definition 4. Assuming the indiscernibility
relation of C is expressed as U/IND(C) = {X,,
X,,++, X, } in K, the #-decision matrix of K is
defined as

M(K) = (my) . (D
where m; ={a € C.a(X,)#a(X;) & D(X,)#
DX}, iy j=1.2,+,n.

Definition 5. Assuming (m; )., is the ele-
ment of the §-decision matrix of K, and A, is de-
fined as a decision function of condition equiva-
lence class X;

Ai:/\ V a (2

j u€m,j
where A and V denote the conjunction and dis-

junction of the Boolean operation, respectively.
1.2 Evaluation of rules

Generally, two intension indexes are used to
evaluate rules being strong or weak: One is the
confidence of rules and the other is the coverage

of rules™.

The confidence expression indicates
the reliability of the specific rule for the decision-
making, shown as

CFIX->Y)=|XNY|/|X| (3)
where X—Y represents a rule, and X and Y are
the left-hand side (LLHS) and right-hand side
(RHS) of the rule, respectively "), The cover-
age expression 1s

CVIX—>Y)=|XNY|/|Y] 4)
Eq. (4) refers to the supporting proportion of the
specific rule accounting for the relevant decision
class.

In Egs. (3,4), X and Y stand for a certain

condition equivalence class and decision equiva-

indicates the

lence class, respectively, and
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! .
. These two indexes have a range of

radix of " «
[0, 1] and we select the effective rules with first
higher confidence value and then greater coverage

valuel™,

2 INCREMENTAL LEARNING
MODELS

When a newly increased maintenance decision
case, which is hereinafter referred to as a newly
increases object x, is added to the historical main-
tenance case database (namely, the knowledge
representation system mentioned above), it may
produce compatible or incompatible, and certain

or uncertain decision rulest'''*,

Regardless of
any situation ahead, the new object will update
the existing rules. This paper discusses following
four events that arise when a new object x is add-
ed (x:2,~>x;, where x, and x; are LHS and RHS

of the maintenance decision case, respectively).
2.1 Event 1

In the event of x, € X;(i=1,2,++,n) and
€Y, (U=1, 2,

condition equivalence class X; and the decision e-

,m), which means that the

quivalence class Y, of the existing rules set are not
changed by the newly increased object, the rules
will not be updated, but the intension of some ex-
isting rules will change. Four possible cases are
listed below.

() If X;NY,=X,;, the updated intension is
following.

For(X,—Y,), the updated confidence CF' =
1(same as the current), and the updated coverage
CV =(|X.NY,|+D/C|Y,|+1D. For (X,>Y))
(1), CF'=(|X,NY,[)/(|X,|) (same as the
current) , and CV'=(| X, NY, ) /C|Y,|+1.

() U X, NY,#0 & X,NY,#X,, the upda-
ted intension is following.

For (X, = Y,), CF' = (|X;NY,| + 1)/
(|X;|+1) and CV' = (| X, NY,| +D/C|Y, |+
D. For (X,—Y,) (+t #),.CF' =(|X,NY,])/
(| X,] ) (same as the current) and CV =
(X, NY, H/CY,|+1. For (X,—>Y,) (s D,
CF' = (|X.NY,| )/(|X;| + 1) and CV =
(| X;NY.[)/C]Y,]) (same as the current).

(3) If Ia€X1<l:1329"'9n>91§€Y1’CIND/
(D)({'€l,1=1,2,+ym), and X;NY, =, sup-
posing X; € Q, =U X, , Ximeets X; & Q, =

i

UX.(g=p) & Q, C IND((X)) . Now, the

iq

existing elements m,,,,(ig<(i) and m, , (i<liq) are
deleted, and new elements m,,; and m,,,, are add-
ed into the ¢-decision matrix. The decision func-
tions of X;, X, and X,, are updated and the oth-
ers are same as the current. Meanwhile, X,, Q,,
and Q, are expressed as
X=X, U (e} Q=U X,. Q=UX, UX,

For (X,—>Y,). CF'=1/(|X,| +1) and CV' =1/
(Y, |+ 1). For (X,—>Y,)(l#1[!), CF =
(X, NY, /(X +1) and CV' =(| X, NY,|)/
|Y,| (same as the current). For (X,—>Y,) (k#
), CFF = X,NY,|)/|X:,] (same as the cur-
rent) and CV'=(| X, NY,|)/C]Y,|+1D.

D Uz, €X,(G=1,2,,n), 2,€Y,CIND/
(DH){'€l,1=1,2,++ym), and X;NY, =&, sup-
posing X; © Q, zy X, » X meets X, &Q,ZIND(

(X)). Now, the new elements m,, ; and m,,,, are
added into the @-decision matrix. The decision
function of X, is updated and the others are the
same as the current. Meanwhile, X;, Q,, and Q,
are expressed as X; =X, U {x}, the new -decision
equivalence class Q,=Q,+, . and the existing §-de-

cision equivalence class Q, = (U X,, ), respec-
b

tively.

For (X, —>Y,), CF =1/(|X,| + 1) and
CV'=1/C]Y,|+1. For (X,—»Y)( # 1), CF’
= (X, NY | /(X 4+ 1D and CV' =
(|X, NY,[)/|Y,| (same as the current). For
(X, > Y/ (k#i), CF = (| X,NY/ /] X,]
(same as the current) and CV' = (| X, NY,|)/
(ly,|+D.

2.2 Event 2

In the event of x, & X; (i =1,2,
2 €Y, (I=1, 2,

alence class is formed by the newly increased ob-

,n) and

,m), the new condition equiv-

ject x.
Supposing the new condition equivalence
class defined as

X €Q,8 Q,=(UX,) € U/INDU(X)
ip
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p=1,2,,r
a new increased column X,., is added to the deci-
sion class Q, of the ¢-decision matrix, and the ele-
n & i #1p) of the deci-

sion function of X,;, is produced. Then, the de-

ment m; ., (1=1,2,

cision function is updated and Q, = (9 X, U
X)) € (U U (X, )/INDO@O- (X)) .

For (X,., —>Y,).CF =1 (same as the cur-
rent) and CV = 1/( \Y,\ +1). For (X,—Y,)
(i=1,2,-,n), CF = | X,NY,|/| X,
the current) and CV' = | X, NY,|/(]Y,| +1D.

(same as

2.3 Event 3

In the event of , € X;(:=1,2,++,n) and
2, @Y, (1=1,2,

lence class is formed by the newly increased ob-

,m), the new decision equiva-

ject x.
Supposing X; and Q, are obtained by
X, €Q,&Q,=(UX,) &€ U/IND(Y-(X))
7

1P min < T < 1P max

the newly increased elememts m,, ; and m,,,, are
added to the 0-decision matrix, shown as

my. ={a € C,a(X,) # a(X,)} ip <i

m,, ={a € C,a(X) #=a(X,,)} i<ip

The decision functions of X; and X, are up-
dated and the others are the same as the current.
Meanwhile, X;, Q,, and Q, are expressed as
X,=X,U{x}, the new @decision equivalence
class Q,= Q.+, and the existing §-decision equiv-

alence class Q,=( U X)), respectively.

ipFi
2.4 Event 4
In the event of x, & X;(i=1,2,++,n) and
2,¢Y,(I=1,2,++,m), the new condition equiva-

lence class X,:; and decision equivalence class
Y, . are formed because of the newly increased
object x.

The decision matrix element m; ., (i=1,2,
«-+,n) of the equivalence class X,.,, which is add-
ed into the #-decision matrix as (nz+1)th column,
is produced and then the 6-decision matrix after
being updated is converted into a (n+1) X (n—+
1)-order matrix.

For(X,.,—~Y,.),CF =CV' =1. For(X,—~
Y)(Gi=1,2,,n,l=1,2,,m), CF =

| X, NY, |/ X
CV'=|X.NY,|/|Y,| (same as the current).

) (same as the current) and

3 REDUCTION AND COMBINA-
TION OF RULES

For the updated decision rules: (X;,—~Y,) (i=

122 e j=1,2,
and CV’ are indicated by

CF' (X, —~YD= |X. NY[|/|X

VX, >YD= |X, NY,|/]Y/]

the new rule intensions after combination of the

,m), if their intensions CF’

same decision functions are shown as follows! %

w

CF'(X >Y)=> X, NY, /D) X:
i=1

i=1

CV(X>Y)=> X NY |/|Yr]
i=1
where the same decision functions X; (:=1,2,---,

w) are described as X and w is the number of the
same decision functions, Y, a certain decision
equivalence class and Y, €U/IND(D).

After combination of rules and the intension
update of the same rule in different condition
equivalence classes corresponding to a certain de-
cision class, the generalized rules are selected,

and the set of typical rules is created.

4 EXAMPLES AND RESULTS

(31 this paper

Based on previous studies
chooses the aero-engine CF6-80C2A5 that is wide-
ly used in airlines, and selects the maintenance
data of China Eastern Airline in a set period of
time. The civil aviation aero-engine is composed
of five modules: Low-pressure compressor, low-
pressure turbine, high-pressure compressor,
high-pressure turbine, and combustor. And the
maintenance levels include visual check, perform-
ance overhaul, and full overhaul. The perform-
ance parameters are described by DEGT, DN2,
DWF, ZVBIF, ZVB2R, GEGTMC, and
GN2MC, in which DEGT, DN2, and DWF are
the most important parameters>
DEGT, DN2 and DWF are regarded as condition

attributes and correspond to a, b and ¢ of the con-

. Consequently,

dition attribute set C in the numerical example,
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respectively. The high-pressure turbine (HPT) is
regarded as a decision attribute, and corresponds
to Y of the decision attribute set D in the follow-
ing case. The discretization of attribute values is

taken from Ref. [3], and the attribute value set V.

isV={a,,a,:a5:b, b5 :b5:¢1s¢s+¢5,Y,Y;,Y5},
where a;,b; and ¢; are condition attribute values
and Y, the decision attribute values(:=1,2,3).
Table 1 is the knowledge system formed by first
20 objects from Ref. [3].

Table 1 Historical HPT data of civil aero-engine CF6-80C2A5

Condition Decision Condition Decision
No. attribute (value) attribute (value) No. attribute (value) attribute (value)

a b ¢ Y a b ¢ Y
1 as b, Cy Y, 11 as by ¢y Y,
2 a b, s Y, 12 as by 3 Y,
3 a; b, s Y; 13 a; by 3 Y,
4 as by Cy Y, 14 a, b, ¢y Y,
5 a, b Cy Y, 15 as by C3 Y,
6 a, by C3 Y, 16 as b c Y,
7 a, b, & Y, 17 as by Cy Y,
8 as b Cy Y, 18 a, b Cy Y,
9 as by Cy Y, 19 as by s Y,
10 a, b C Y. 20 as bs c Y,

Obviously, Table 1 is an incompatible deci-
sion system. The objects of the same attribute
values including the condition attributes and deci-
sion attributes together are combined, and the
@ decision matrix is formed as Table 2 in terms of
the front description.

' is presented

If a newly increased object z
as (a, Nb, Nc;—>Y,), the condition attribute val-
ue a, N\ b, N\ ¢, displays that the levels of DEGT,
DN2 and DWF are 2, 3 and 1, respectively. The
maintenance level of HTP will be decided accord-
ing to the condition attribute value. A few rules
with their intension related to the condition at-

D selected from the decision

If the

specified intension thresholds of maintenance de-

tribute value of z°

matrix of Table 2 are listed in Table 3.

cision rules of the aero-engine module are 0. 6
(CF,) and 0. 2(CV,), the rule obtained from Ta-
ble 3 is a;, A b, —>Y,. which means the mainte-
nance decision level of HTP judged by the exist-
ing rules and condition parameters of the aero-en-
gine module is a performance overhaul (POH).
Actually, the maintenance level of HTP in a fac-
tory is Y, (it means that visual check is carried

out) , which indicates the decision attribute value

predicated in terms of the existing rules produced
by the historical maintenance data is not true.

D is added to the historical maintenance

Once x
database, it accords with the model of Event 4,
and a new condition equivalence class and decision
class are formed. The newly increased decision
matrix of X, is M(X,D)=[aV bV c.aaV b,a\Vb
VesiesbVesbsbN ¢cobN coaV b\ coaV bV coaV e,
aV bV ¢]" and the updated rules with their inten-
sions are shown in Table 4.

If the next newly increased object 2 is
presented as (a; A b, A c;—~>Y;), we can receive
the rule a; — Y, with the specified intension
thresholds 0. 6 (CF,) and 0. 2(CV,) in terms of
Table 4, which shows that the predicted mainte-
nance level of the aero-engine module is in line
with that in practice based on the last updated
rules and the condition parameters of the aero-
engine module. When 2 is added sequentially,
it accords with the model of Event 2, and the
rules with their intensions will be further upda-
ted. Any newly increased object can produce cor-
responding updated decision rules and their inten-
sions on the basis of the models described above,

and it is unnecessary to illustrate one by one.
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Table 3 Rules with their intension related to condition
attribute value of x

Rule Confidence Coverage
2Nb,—>Y, 2/3 2/8
as; \Nb,—~>Y; 1/3 1/11
a N\ e —~>Y, 1/2 1/1
a; Ny —>Y, 1/2 1/8
by, \ey—>Y, 1/1 1/8
Table 4 Updated rules and their intension

Rule Confidence Coverage
ay Noy \Nen =Y, 1/2 1/2
a1 —~>Y, 4/4 4/8
as; Nbs \Nei—>Y, 1/2 1/8
a Nbs N e,—>Y, 1/2 1/8
by Ncy—>Y, 2/3 2/8
by N co—>Y5 1/3 1/11
a, Nb,—>Y; 2/2 2/11
a» Nbos Ne,—>Y; 1/2 1/11
az;—>Y; 7/7 7/11
c;>Y; 6/6 6/11

S CONCLUSION

From the example and the results, we can
see that it is feasible to reasonably determine the
maintenance level of aero-engine modules if rough
set theory is applied to extract rules from the his-
torical maintenance data. When the historical ma-
intenance data are little, the intensions are scat-
tered and unstable, with which the rules can not
adequately reflect the generalized laws and the er-
ror decision-making may be produced sometimes.
The distribution of the intension values of the
constantly updated decision-making rules shows a
tendency to be robust with the newly and continu-
ously added objects. In this way, the generalized
and typical rules are obtained, with which the en-
gineers can predict the maintenance level of the
aero-engine modules reasonably and accurately
while airlines can plan the maintenance budget on
good grounds.

The rough set theory has been widely and
successfully applied in engineering fields, but it is
only suitable for discrete data. In engineering,

many data sets are continuous values and the dis-

cretization of the continuous values has a great af-
fect on decision result. Any newly increased ob-
ject with continuous values may change the dis-
cretization and clustering of the whole sys-
tem"*' . In particular, in the case of the aero-
engine with high level of complexity, there exist
consanguineously physical relationships between
the measured values of different indexes. Hence,
data discretization and cluster decision-making
can not completely depend on machine learning,
sometimes the experience and knowledge of the
professionals in their fields are necessary. In
summary, it is worth further studying to build
the decision supporting system of maintenance

levels of aero-engine modules based on more

methods mixed together.
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