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Abstract: A fast feature ranking algorithm for classification in the presence of high dimensionality and small sample
size is proposed. The basic idea is that the important features force the data points of the same class to maintain
their intrinsic neighbor relations, whereas neighboring points of different classes are no longer to stick to one an-
other. Applying this assumption, an optimization problem weighting each feature is derived. The algorithm does
not involve the dense matrix eigen-decomposition which can be computationally expensive in time. Extensive exper-
iments are conducted to validate the significance of selected features using the Yale, Extended YaleB and PIE data-
sets. The thorough evaluation shows that, using one-nearest neighbor classifier, the recognition rates using 100—
500 leading features selected by the algorithm distinctively outperform those with features selected by the baseline
feature selection algorithms, while using support vector machine features selected by the algorithm show less

prominent improvement. Moreover, the experiments demonstrate that the proposed algorithm is particularly effi-
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cient for multi-class face recognition problem.
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INTRODUCTION

High throughput technologies now routinely
produce large data sets characterized by enormous
number of features in data mining and machine
learning field. However, not all of them are real-
ly correlated with the class labels. Many irrele-
vant and redundant features may exist in noisy
data, which poses serious time and cost challen-
ges to the traditional statistical learning methods.
For example, it is reported that the support vec-
tor machine (SVM) algorithm, one of the most
advanced classifiers, has a worst-case sample
complexity that grows at least linearly in the

[ Researchers and

number of irrelevant features
practitioners have realized that data preprocessing

plays an essential role for successful data mining

manifold learning; Laplacian matrix
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tasks. Feature selection is one of the effective and
frequently used data preprocessing method. It can
reduce the computational cost for classifcation or
regression, alleviate the risk of overfitting in situ-
ations with small training set size, and help to re-
veal unknown relationship among features. An
interesting observation is if a good feature subset
of the data is provided, even the naive classifier
such as k£ nearest neighbor rule can achieve suffi-
ciently high classification accuracy'*. Many
schemes have been suggested to solve the feature
selection problem. They can be categorized into
three groups: Embedded, filter and wrapper
models. The filter model selects the optimal fea-
ture subset in term of general characteristics of
the data, hence it is independent of any classifier.

The embedded and wrapper models construct and

Website of on-line first: http: / www. cnki. net/kems/detail/32. 1389. V. 20121219, 1137. 003. html(2012-12-19 11 = 37).

Foundation items: Supported by the National Nature Science Foundation of China (71001072); the Natural Science
Foundation of Guangdong Province (9451806001002294).
Received date: 2011-12-29; revision received date: 2012-04-04

Corresponding author: Song Guangwei, Associate Professor, E-mail:broadfunc@hotmail. com.



390 Transactions of Nanjing University of Aeronautics & Astronautics

Vol. 30

select feature subsets that are useful to build a
good predictor. For example, Guyon utilizes
SVM as a subroutine (wrapper) in the feature se-
lection process with the purpose of optimizing the
SVM accuracy on the resulting subset of fea-
tures™. For high dimensional data, the filter
model is often preferable because of its usability
with alternative classifiers, its computational

tJ, although it can not al-

speed and its simplicity
ways achieve the comparative classification per-
formance as wrapper and embedded models.

The remarkable filter method, RELIEF. is
proposed to weight the features for two-class
problems™. The algorithm iteratively calibrates
the weight of each feature by updating the hy-
pothesis margin, which is defined as the differ-
ence between the distance from the point to its
nearest neighbor in the same class and the dis-
tance from the point to its nearest neighbor in the
opposite class. The RELIEF-F algorithm ™ is a
generalization of RELIEF capable of handling
multi-class problems, using an average of the £
nearest neighbors of a sample instead of only one
nearest neighbor of the sample to compute the
margins. It is shown that the RELIEF-F algo-
rithm is reliable enough to guide the feature
searching. Further, it is pointed out that in both
RELIEF and RELIEF-F the nearest neighbors of
a given sample are predefined in the original fea-
ture space, hence liable to yield erroneous nearest
point either in the same class or in different clas-
ses with copious irrelevant features!”. The bias
can be reduced following the principle of the EM
algorithm, which approximates the real nearest
point iteratively in the weighted feature space.
However, the pseudo EM algorithm will necessa-
rily increase the computational complexity of the
approach.

A provable and important feature selection
criterion for filter methods is mutual informa-
tion"* . Fast correlation-based filter (FCBF )
applies the concept of approximate Markov blan-
ket to eliminate the feature redundancy, and uses

the concept of symmetric uncertainty to deter-

mine the feature relevance. An optimal subset

can thus be determined by a group of features
with no approximate Markov blanket. Minimum
redundancy-maximum relevance ( MRMR )t*tH
feature selection framework incrementally selects
features minimizing their redundancy with fea-
tures chosen in previous steps and maximizing
their relevance to the class simultaneously. Two
criteria, mutual information difference and mutu-
al information quotient are used and the latter is
experimentally demonstrated better. All the mu-
tual information based algorithms nevertheless
have the high computational complexity in calcu-
lating the entropy.

In this paper, a fast feature ranking algo-
rithm is proposed based on local learning. Fea-
ture ranking is a filter method: It is a preprocess-
ing step, without trying to optimize the perform-
ance of any specific predictor. The main idea
comes from manifold learning. We assume that
the important features can force the data points of
the same class to maintain their intrinsic neighbor
relations, and the data points of different classes
are no longer to stick to one another. The similar
notion can be found in Lalacian Score!*!, Fisher

Scorel'™, HSICH, SPECH™ and Trace Ratiot'®.

099 it is further proved that a uni-

In recent study
fied similarity preserving framework encompasses
these criteria. We extend this notion and empha-
size the feature that will " pull” the neighbors
closely in the same class and "push” the neighbors
away in different classes. The experiments on the
face datasets show the proposed algorithm often
outperforms the well-known methods when used
as a preprocessing step for classification rules,
and has the time complexity less than or equal to

that of RELIEF-F.

1 ALGORITHM

Given a N X d data set D consisting of N sam-
ples over d-dimensional feature space R, represen-
ting d features f,,f;,**,fs over N samples, let
the row vectors of D be denoted by xT .-+, x% and
y1s°*»yNy the corresponding class labels. Most
manifold learning algorithms aim to reveal the in-

trinsic distribution in a lower-dimensional space in
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the case whose data are densely distributed on a
manifold. One may also expect that the signifi-
cant features are characterized by maintaining the
original neighbor relations for neighboring data
points of the same class, and differentiating and
keeping away neighboring points of different clas-
ses. Let o € R? denote the weight vector, each
element of which represents the significance of a
feature. We firstly construct the neighborhood
graphs. Let G, and G, denote two (undirected)
graphs both over all data points. To construct
G, » we consider each pair of points x, and x; from
=y, . An edge is added be-

. . / .
tween x; and x; if x; is one of x,” s k-nearest neigh-

the same class, i.e. y;

bors or is one of x;,” s k-nearest neighbors ( the
other possibility is to consider the e-ball imple-
mentation). For G, , we instead consider each
pair of x; and x; with y, # y, . and likewise, con-
nect x; and x; if x; is one of x,” s k-nearest neigh-
bors or x; is one of x; "s k-nearest neighbors.
Then we can naturally specify the adjacent matrix
W of graph G,, , where each element W, refers to
the weight of the edge between x; and x; . and is
given by
W, =
1 x; € knn(j) orx; € kun(i), and y, =y,
0  Otherwise
@y
The defined N X N matrix W is clearly symmetric
and sparse. Similarly the other adjacent matrix B
can be computed from the graph G, , where each
element B; refers to the weight of the edge be-
tween two vertices from different classes
B, —
1 x; € knn(j) or x; € knn(i),and y;, # y;
0 Otherwise
(2)
The important features can preserve the
closeness of each neighborhood within which the
samples have the same label in the weighted fea-
ture space. Thus the following criterion should be
minimized
]u‘:ZZ\Iw*x,fw*x] | sw, (3
A

where * denotes the element-wise multiplication

and || « ||, the Euclidean distance.
Considering the matrix W is symmetric, we
can rewrite the criterion as

d
To=2. 21D (wxt —wxH )W, =

k=1

d
DO Iwhxt —xHWy ) =

ij k=1
d
2 2
2 k k k. k —
Ewk(zx, W, + Zx] W, fZZx,x_,W,,)—
k=1 ivj ivj ivj

d
2> Wi (fT X diag(We) X fr — fT XWX f,)

k=1
where x* denotes the kth element of x; , e is the

vector of all ones, and diag(x) generates a diago-
nal matrix from the elements of the vector x . Let
D, =diag(We) , L, =D,

be expressed as

— W, the criterion can

d
Jo=2> w.fIL.f,

k=1

Let T, =diag([ f{L.f1sfiL.f.]") » the cri-
terion can be further simplified as
Jo=2w"T, w 4)
Note L,, is a positive semi-definite matrix,
hence fiL.f,>=0,k=1,--,d . It is clear that the
matrix T, is a diagonal matrix with all non-nega-
tive diagonal elements.
For the data in different classes, the impor-
tant features can differentiate and keep away the
neighboring points in the weighted feature space.

Therefore a reasonable criterion is to maximize

L= lwsex —wex, |2 =
DIV (wxt —wxH?) By =
d

2> wi(fi X diag(Be) X f, — ft X BX f)
1

Fy
(5
Let D, =diag(Be) , L, =D, — B . The objec-

tive function(Eq. (5)) can be reformulated as
J,=2w" —T,w (6)
diag([f'lliL,,fl st ’fg‘L/;fz PRAE)

T, is also a diagonal matrix with all

where T, =
JaLlof 1" .
non-negative diagonal elements.

With these two aspects of consideration, we
provide two ranking criteria, e. g. the quotient

criterion and the difference criterion
Max (J,/J.)
Max (]/, - Ju)
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The quotient criterion leads to the following

optimization problem

WTT/)W
w T,w 7
s.t.w(i) =0 i=1,,d

where the constraint w > 0 ensures the weight
vector is a distance metric.

Eq. (7) can be approached in an efficient
way. Firstly we eliminate the last constraint and
reduce the problem to
wi T,w

W Tow (8)

max

By applying the lLLagrangian technique, we switch
to a generalized eigen-decomposition problem T,w
=AT.w . The elements in eigenvector are necessa-
rily non-negative because the matrices T, and T,
are both diagonal with non-negative diagonal ele-
ments. Thus Eq. (7) is actually equivalent to Eq.
(8). We can also take advantage of the diagonal-
ization of the matrix T.'T, to derive eigen-values
directly as A, = fiL,f ./ fiLof sk =1,++,d , and
use them as the weights for the features, e. g.

We <A . The elements in represent the signifi-

cance of the features and should be sorted in de-
scending order.

It is noted here that fiL.f, almost never
reach the value of zero on real-world data sets,
therefore the small sample size problem is avoi-
ded. A simple proof is sketched as follows. Sup-
pose fiL.f, = 0, which means E(Ej(xf —
x¥)*W,; = 0. This equation requires that all the
points within each neighborhood have the identi-
cal value in feature £, which should be removed in
practice because it has no discriminating capability.
In the experiments this phenomenon never happens,
hence the further processing step is ignored.

Using the difference criterion, the optimiza-
tion problem is formulated as follows

max w (T, —T,w
s.t. wiw=1 (9
w(i) =0 i=1,,d
where the constraint w' w=1 prevents the maximi-
zation from increasing without bound. The diago-
nal matrix T, — T, is generally positive semi-defi-
nite since the distances among the points from

different classes are usually larger than the dis-

tances among the points from the same class.
Observing the similar technique, the solution
with no generalized eigen-vector computation can
be derived.

To summarize, the main procedure is the al-
gorithm based on the quotient criterion FRLL-Q
and the algorithm based on the difference criteri-
on FRLL-D, shown in Algorithm 1 and Algo-
rithm 2.

Algorithm 1 FRLL-Q

Input.

The data set D = [x; »x; .
bels Y1t YN 3

Output;

The order of features and the corresponding weights;

,x, | € RV with class la-

Step:

1. Construct the graph G,, and G, on the data D with class
labels;

2. Construct the adjacent matrices W and B;

3. Compute the Laplacian matrix L., and L, from W, B,
respectively;

4. For each feature f, . £ = 1,---,d . there is

W = f’AI"IthA'/fEI‘aufk H

5. Sort w in descending order;

6. Return w.

Algorithm 2 FRLL-D

Input.

The data set D = [ x; ,X,,°*
bels Y1 s YN 3

Output;

The order of features and the corresponding weights;

,x, | € RV with class la-

Step:

1. Construct the graph G,, and G, on the data D with class
labels;

2. Construct the adjacent matrices W and B;

3. Compute the Laplacian matrix L,, and L, from W, B,
respectively;

4. For each feature f, , k = 1,
W = f’AI:L/:fk - fk]L wf ks

5. Sort w in descending order;

,d . there is

6. Return w.

2 COMPUTATIONAL ANALYSIS

A time complexity analysis of FRLL-Q and
FRLL-D is analyzed and compared with that of
other algorithms. It can be found in case of d >
N, the two FRLLs are fast feature ranking algo-
rithms comparable to RELIEF-F.

The computation of FRLLs contains three

steps: Construct the graphs G, » G, and the adja-
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cent matrices B, W, compute the weight vector
w, and sort the weights. The cost of the first step
is mainly the costs of computing the pairwise Eu-

clidean distances and sorting the distances in as-
cending order, which require around %deJrZN(,

and 2N?log, N computations respectively if k-nea-
rest neighbor algorithm is adopted to construct
the adjacent graph"'®'"), Obtaining the d weights
of the features in the second step requires around
2N*d computations, while sorting the weights in
the last step requires around dlog,d computa-
tions. We can conclude the computational com-

plexity of FRLL-Q and FRLL-D algorithms is

2 N*d+2Nd +2N*log, N + dlog.d .

The RELIEF-F algorithm consists of compu-
ting the pairwise Euclidean distances and sorting
the distances in ascending order identical to the
first step of FRLLs, iterating the weight vector
for times, and sorting the weights in descending

order. Let ¢ denote the class number, the three
steps require around %de + 2Nd 4 cN*log, N,

(‘Nd 1)

hence the overall computational complexity is

and dlog,d computations respectively,

%NZdJrZNdJrcNZlogg N+¢Nd +dlog,d , which

is not as high as FRLLs for two-class problems.
With the class number increasing, the computa-
tion of FRLLs may be fewer than that of RE-
LIEF-F.

To the best of our knowledge, FCBF is the
fastest feature selection algorithm among all the
mutual information based methods. To determine
the relevant features in the first step requires
complexity O(d); to determine the predominant
features in the second step requires a best-case
complexity O(d) when only one feature is select-
ed and all of the rest of the features are removed,
and a worst-case complexity O(d?) when all fea-
tures are selected. In the experiments, it can be
seen that the time cost of FCBF basically presents
a polynomial dependence on the number of dimen-

sionality, thus for very high dimensional data

sets, FRLL-Q and FRLL-D often show the com-
putational advantage over FCBF.

3 EXPERIMENTS

The aim of the experiments described here is
twofold: (1) To compare classification accuracy
achieved using FRLLs versus other algorithms;
(2) to compare their computational cost. All the
experiments are implemented in Matlab 7. 0 and
run on a Pentium (R) 4 CPU 3. 60 GHz machine
with 4 GB RAM.

3.1 Feature selection for face classification

The effectiveness of the feature ranking algo-
rithm obtained on three face data sets is analyzed,
including Yale, Extended YaleB and PIE. All im-
ages are scaled to 32 pixel X 32 pixel. For YaleB
and PIE, only ten classes of data are selected re-
spectively for feature selection and validation.
Each class contains 15 randomly chosen images,
hence d > N . The descriptions of the data sets
are summarized in Table 1, where # Feature re-
presents the number of the original features,
# Samle the sample size, and # Class the number
of classes.

Table 1 Summary of face datasets

Data set # Feature # Sample # Class
Yale 1024 165 15
YaleB 1024 150 10
PIE 1024 150 10

The classification rates preprocessed by the
proposed algorithms are compared with the afore-
mentioned RELIEF-F, subset-level fisher score
( SFisherScore ), FCBF, MRMR-MID and
MRMR-MIQ. In the proposed algorithms and
RELIEF-F the number of the nearest neighbors is
always set to be 5. For classes with too few sam-
ples (<(5), all data points are used as neighbors.
SFisherScore is an iterative algorithm finding the
optimal feature subset such that the fisher score is

d[18719]

maximize . The optimal feature subset is al-

ways used, instead of the features selected by se-
FCBF, the

threshold is fixed as default value 0 to obtain a

quential forward selection. For
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descending order of all the relevant features in the
first step. The MRMR-Diff and MRMR-Quot al-
gorithms, corresponding to the MRMR frame-
work with mutual information difference and mu-
tual information quotient criteria, are superior in
gene expression selection. The codes are down-
loaded from the author’s websitel'”. Further-
more, it has been reported that the mutual infor-
mation based feature selection algorithms, e. g.
FCBF, MRMR-Diff and MRMR-Quot perform
better if discretization methods have been applied

[10-11]

on the continuous data For simplicity here

each feature is discretized in three segments

(7007/170'] ’ [/175’/1+U:| ’ and (/1+0"+OO) ’
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where 4 is the sample mean of training data and ¢
its standard deviation.

The performance of the algorithms is meas-
ured by the classification accuracy rate with se-
lected features via five-fold cross-validation. The
process is repeated for 10 times and the averaged
accuracy rates versus selected feature number are
recorded. To calculate the classification accuracy,
l-nearest neighbor classifier and linear SVM are
used. The parameter in SVM (cost) is also tuned
via cross-validation and the best accuracy is
adopted. The testing results versus the increasing
numbers of features are plotted in Fig. 1.

In Figs. 1(a,c,e), it can be seen on Yale and

0.8
0.7
0.6
X
> 05
g
g 044 —<—FRLL-D
< —o— SFisherScore
0.3 —+— FCBF
/ —&— RELIEF-F
0.2 —a— MRMR-Diff
—»— MRMR-Quot

"0 100 200 300 400 500 600 700 800 900 1 000
Feature number
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—— FRLL-Q

Accuracy / %
f=J
W

—<—FRLL-D
0.4 4 —o— SFisherScore
031 —+— FCBF
1 —=— RELIEF-F
02 —a— MRMR-Diff
’ —»— MRMR-Quot

0.1

0 100 200 300 400 500 600 700 800 9001 000
Feature number

(d) SVM on PIE
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s 07/
> 06
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g 03y —+FRLL-D
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(f) SVM on Yale B

Fig. 1 Classification error as function of the number of features for data sets
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YaleB the best classification performance of the
1-nearest neighbor classifier is obtained with fea-
tures selected by FRLL-Q, while on PIE is ob-
tained with features selected by FRLL-D. Noticea-
bly, the three accuracy-rate curves have similar
tendency. They increase rapidly and constantly
decrease, and then converge at some points, indi-
cating that more irrelevant features lead to worse
classification. The overall accuracy rates achieved
by FRLL-Q and FRLL-D are higher than that by
the baseline algorithms. However, it is observed
that MRMR-Diff and MRMR-Quot have the com-
parable or a little better performance when only
very few features are selected. The reason may lie
in the fact that FRLLLs are based on local learn-
ing, capable of classifying the data in each local
space, thus need more features to recognize a face
image, whereas MRMR-Diff and mRMR-Quot di-
rectly estimate the correlation between individual
feature and the label in the global hypothesis
space. Figs. 1(b, d, ) show the respective com-
parison results with the SVM classifier. Features
selected by the proposed algorithms still indicate
a great discriminating strength on Yale, but show
less prominent improvement than the baseline al-
gorithms on the other two datasets. It may be due

to the superiority of the SVM classifier.
3.2 Time complexity results

Since the previous subsection has established
the effectiveness of the FRLL-Q and FRLL-D, it

is useful now to compare the proposed algorithms

and other feature selection approaches empirically
with respect to time complexity. As stated in Sec-
tion 1, the running time of FRLLLs and RELIEF-F
is of the same order of the multitude, both show-
ing the polynomial dependence on the training da-
ta size when dimension is fixed. On the contrary,
the time cost of FCBF has polynomial dependence
on the number of the dimensionality. It is expec-
ted that the FRLLs and RELIEF-F algorithms
will show less computation complexity than
FCBF in high dimensional data sets with small
sample size. Below to confirm experimentally this
theoretical analysis, time consumption as a func-
tion of the number of training examples is meas-
ured on the 2-class Yale, 7-class Yale and 15-class
Yale datasets. Number of data points in each class
ranges from 3 to 7, and other settings are same as
the aforementioned section.

Fig. 2 shows the time consumed for the three
face datasets. Since FRLL-Q and FRLL-D almost
have the same computational cost, we only plot
the time curve of the FRLL-Q. It can be seen for
the 2-class problem, time cost of the proposed al-
gorithm is greater than that of RELIEF-F, but on
the 7-class and 15-class datasets FRLL-Q is the
most computationally efficient. Moreover, for
FCBF the slop of the dependence on the number
of the patterns is approximately linear whereas
RELIEF-F and FRLL-Q have the polynomial de-
pendence on the number of samples, which presents
that the FRLI-Q algorithm is appropriate if small

sample size datasets are provided.

0.35 0.40

1.4

—~FRLL ——FRLL
0.30 F —— RELIEF-F 0.35 W 12k ——RELIEF-F
” —+FCBF__| « 030} —~FRLL - —* FCBF
3 0B A S —~RELIEF-F| 3 101
E o020} E 0Br ~*FCBF E osf
o = 020} "
= - L
E 0.15 g o151 g 0.6
2 olof g 010} g 04r
005p 0.05 02f e
000 ————F+1+—¢ 0 RN 0.0 .
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Sample number
(b) On 7-class Yale

Sample number
(c) On 15-class Yale

Fig. 2 Time cost for three face datasets by different algorithms
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4 CONCLUSION

The main contribution of the paper is to pro-
vide a principled way to perform feature weigh-
ting for classification problems with high data di-
mensionality. It avoids any heuristic combinatorial
search, and hence can be implemented fast. The
algorithm is based on the graph Laplacian notion,
but

which will lead to a huge save of both time and

has no eigenvector computation involved

memory. Extensive experimental results show
that the proposed algorithms consistently outper-
form the state-of-the-art RELIEF-F extensions
for face recognition problems considering both ef-
fectiveness and efficiency.

The FRLL framework forms the initial study
for feature ranking. From the solution it can be
seen that the feature selection procedure is greedy
and unable to handle feature redundancy. If, for
instance, there are many correlated features in
the dataset, the leading features may not be opti-
mal for classification. It has been known that re-
dundant features can adversely affect the per-
formance of classification, therefore should be re-
moved by feature selection. That will be investi-

gated in the future work.
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