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Abstract: A lattice Boltzmann flux solver (LBFS) is presented for simulation of fluid flows. Like the conventional
computational fluid dynamics (CFD) solvers. the new solver also applies the finite volume method to discretize the
governing differential equations, but the numerical flux at the cell interface is not evaluated by the smooth function
approximation or Riemann solvers. Instead. it is evaluated from local solution of lattice Boltzmann equation (LBE)
at cell interface. Two versions of LBFS are presented in this paper. One is to locally apply one-dimensional com-
pressible lattice Boltzmann (1LB) model along the normal direction to the cell interface for simulation of compressi-
ble inviscid flows with shock waves. The other is to locally apply multi-dimensional LB model at cell interface for
simulation of incompressible viscous and inviscid flows. The present solver removes the drawbacks of conventional
lattice Boltzmann method (LBM) such as limitation to uniform mesh, tie-up of mesh spacing and time interval,
limitation to viscous flows. Numerical examples show that the present solver can be well applied to simulate fluid
flows with non-uniform mesh and curved boundary.
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1 Introduction

Computational fluid dynamics (CFD) is to
apply a numerical method to solve governing
equations of fluid flows on the computer. Among
various numerical methods available™®, the fi-
nite volume method (FVM) is the most popular
approach in CFD. This is because numerical dis-
cretization by FVM is in line with application of
physical conservation laws to a control cell. The
discrete forms of governing equations by FVM
usually involve the conservative variables at cell
centers and numerical fluxes at cell interfaces.
From numerical point of view, only the conserva-
tive variables at cell centers are defined as un-
knowns, which can be given from the solution of

discrete governing equations. In the solution
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process, we need to use conservative variables at
cell centers to evaluate numerical fluxes at cell in-
terfaces. This process is often termed flux sol-
ver. Currently, there are three major flux solvers
in CFD. One is based on the smooth function ap-
proximation. In this solver, a smooth function,
which could be a polynomial™ or a radial basis

function-'-

, is applied to approximate the solu-
tion in the local region. The coefficients in the
smooth function can be determined by collocation
method. Once the smooth function is decided, its
integral or derivative can be given in a straight-
forward way. It should be noted that this solver
is a mathematical approach, which can be applied
to general engineering problems. However, this

solver cannot resolve discontinuity problems such

as compressible flows with shock wave. To re-
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solve shock wave problems in CFD, the Riemann
solver or approximate Riemann solver is often
used. The pioneer work in this category was

U who simplified the com-

made by Godunov
pressible flow into a series of Riemann problems
and then solved one-dimensional (1D) Euler equa-
tions to get local solution. After the work of Go-

[11]

dunov''"”, various approximate Riemann solvers

were presented'?!*). These solvers usually pur-
sue approximate solution of 1D Euler equations a-
long the normal direction to the cell interface.
Thus, they can only be used to evaluate inviscid
flux. For compressible viscous flows, the viscous
flux is still evaluated by the smooth function ap-
proximation. In the literature, there is another
type of flux solver called gas kinetic flux sol-
ver-™ | which evaluates inviscid and viscous flu-
xes simultaneously from local solution of multi-
dimensional Boltzmann equation. The solvers in
this category can be well applied to simulate both
incompressible and compressible flows. But they
are usually more complicated and less efficient
than the smooth function-based solvers and Rie-
mann solvers. In this paper, we will present a
new flux solver, which is based on local solution
of lattice Boltzmann equation (LBE).

In recent years, lattice Boltzmann method
(LBM) P34 has received more and more attention
due to its simplicity, easy implementation and
parallel nature. In LBM, the density distribution
functions are taken as unknowns and LBE is an
algebraic formulation. Once the density distribu-
tion functions are known at a physical location,
the macroscopic flow variables such as density
and velocity can be easily computed from local
conservation laws of mass and momentum. No
differential equation and solution of algebraic
equations are involved in the LBE solver. On the
other hand, it is indicated that LLBE solvers also
suffer from some drawbacks. Due to uniformity
of the lattice, the standard LLBE solver is limited
to the simple geometry and uniform mesh. For
complex geometry and application on the non-uni-
form mesh, additional efforts such as interpola-

tion have to be incorporated. The process may in-

crease the complexity of the solver, and requires
additional computational effort and virtual stor-
age. The second drawback is the tie-up of time
interval with mesh spacing. This drawback
makes the adaptive and multi-block computation
of LBE solvers extremely complicated. In addi-
tion, LBE solvers need more memory to store
density distribution functions than the Navier-
Stokes (N-S) solvers. Another drawback is that
LBE solvers can only be applied to simulate vis-
cous flows. Furthermore, the physical boundary
conditions such as given pressure cannot be im-
plemented directly in the LBE solver. As will be
shown in this paper, all the above drawbacks of
LBE solvers are completely removed by the lattice
Boltzmann flux solver (LBFS).

LBFS is based on Chapman-Enskog (C-E)
expansion analysis, which is a bridge to link N-S
equations and LBE. Usually, the C-E analysis is
applied in the whole flow domain to verify that
the macroscopic flow variables obtained by LBE
solvers at any physical location and any time level
can satisfy N-S equations. On the other hand, it
was found that the C-E analysis can be applied at
any location within a small streaming step. This

U7 in the devel-

idea has been well applied by Xu
opment of gas kinetic scheme, where the flux at
the cell interface is computed by local solution of
BGK equation. In this work, the numerical fluxes
at the cell interface are evaluated by local recon-
struction of LBE solution. Two versions of LBFS
are presented in this work. One is to locally apply
1D compressible LB model along the normal di-
rection of cell interface for evaluation of inviscid
flux. This version is only applicable for simula-
tion of compressible inviscid flows. The other is
to locally apply multi-dimensional LB model at
the cell interface for evaluation of viscous and in-
viscid fluxes simultaneously. The performance of
present LBFS will be investigated through some
test examples. Numerical results demonstrate
that LBFS can accurately and effectively simulate
fluid flows with curved boundary and non-uni-

form mesh. It also removes the drawbacks of

conventional LBM.
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2 Lattice Boltzmann Flux Solver
(LBFS) for Compressible Invis-
cid Flows

The integral form of Euler equations without

source term can be written as
ij W,,d(2+9g F,dS =0 D
dtda r

where the conservative flow variables W and in-

viscid flux F, are given by

T U,
ou oulU, +n,p

W=|o |, F,=|pU,+np (2
ow owlU, +n.p
LoE | L(eE +p)U. |

where p and p are the density and pressure of the
mean flow, respectively. U= (u,v,w) is the ve-
locity vector in the Cartesian coordinate system
and n=(n, ,n,,n.) denotes the unit normal vector
on the control surface. U, represents the normal
velocity, which is defined as the scalar product of
the velocity vector and the unit normal vector,
L e.

U,=nu+nv+nw (3
E is the total energy of the mean flow, which is

defined as
E:e—O—%(uZ—Q—vz—}—wz) 4

Here e=p/ [(¥—1)p] is the potential energy of
the mean flow, and 7 is the specific heat ratio.
On the control surface, the tangential velocity

U.=U.,,U,,U.) can be computed by

U.=U.,U,,U.)=U—U,n (5
Applying Eq. (1) to a control volume gives
N
aw, 1Y
e Z;F,,,ds,- (6

where I is the index of a control volume, 2, and
N, represent the volume and the number of the
faces of the control volume I. dS; denotes the
area of the ith face of the control volume. As in-
dicated in the introduction, the flux solver needs
to reconstruct numerical flux F, at each cell inter-

face from the conservative variables W, at cell

centers. In this section., F, will be computed
from the solution of 1D compressible LB model to
a local Riemann problem. When 1D LB model is
applied along the normal direction to the cell in-
terface, only density, pressure and normal veloci-
ty are involved. Thus, before we address how to
apply the 1D compressible LB model to recon-
struct F,, it is better to rewrite expression of F,
in terms of density, pressure, normal velocity
and tangential velocity. From Eq. (5), we can ex-
press the velocity components in the Cartesian co-
ordinate system in terms of normal velocity and

tangential velocity as

u=U,n, +U,
v=U,n, +U, D)
w=U,n.+U.,.

Using Eq. (7) and the expression of potential en-

ergy, F, can be rewritten as

eU.,
(U U, +pn, +pU, U,
F (U U, + pin, +pU, U, (8)
(U U, +pn. +pU,U.

Y 1 o5 1
_(y_1p+ ZpU,,)U,,Jr 2,oU,, U

2

T

It can be seen clearly from Eq. (8) that, to evalu-
ate numerical flux F,, we need to know the den-
sity, pressure, normal velocity and tangential ve-
locity at the cell interface. This task can be ful-
filled by local application of 1D compressible LB
model to the Riemann problem defined at cell in-
terface. In this work, the non-free parameter
D1Q4 LB model presented in Ref. [ 33-34] is
adopted. This model is derived from conservation
forms of moments, which can be used to simulate
hypersonic flows with strong shock waves. The
non-free parameter D1Q4 model is shown in
Fig. 1. The equilibrium distribution functions and
lattice velocities of this model are given below,

7p(—d1d§ —diu—+du’ +d "+ u’ 4 3uc?)
=

g

2d, (di —d3)
_o(—dditdiutdi+d —u —3uc?)
“ 2d, (d —d)
: 2 N 3
\VJ
-d, -d, d, 4

Fig. 1 Configuration of non-free parameter D1Q4 model
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d, =~ u* + 3¢ — JAu*c? + 6¢!
dy, =~ u® 43¢ +

4u’c® 4 6¢" (10)
where g; is the equilibrium distribution function
in the ith direction of phase space, d; is the lattice

velocity in the ith direction, ¢ is the peculiar ve-

locity of particles defined as c=+/D(y—1)e (D is
the dimension of space). Note that when the
above 1D model is applied along the normal direc-
tion to the cell interface, u has to be replaced by
U,.

Next, we will show how to apply the non-
free parameter D1Q4 model to evaluate F, at cell
interface. As shown in Fig. 1, at any physical lo-
cation, D1Q4 model has 4 moving particles.
Now, we consider a local Riemann problem
around a cell interface as shown in Fig. 2. To
compute F,, we need to know distribution func-
tions of 4 moving particles at the cell interface. In
the framework of LBM, the moving particles are
actually streamed from neighbouring points. As
illustrated in Fig. 3, by giving a streaming step
0,. particles 1 and 3 from left side of interface will
stream to the cell interface while particles 2 and 4
from right side of interface will also stream to the
cell interface. Mathematically, the streaming
process provides the distribution functions of four
moving particles at cell interface as

gt if i=1,3

iimerfﬂ(‘e J— ( 1 1 )
! 1=2,4

gt il
where gt and g® are the equilibrium distribution
functions at the left and right sides of cell inter-

face. For the Riemann problem, they are given

from information at left and right cell centers.

Py, uy, pu

Prs Ups Pr

Interface

Fig. 2 Configuration of a Riemann problem

Fig. 3 Streaming process of D1Q4 model at the cell

interface

With flow variables, they can be computed by
using Eq. (9). With Eq. (11), there are two basic
ways to evaluate the numerical flux F, at the cell
interface. The first way is to compute the flow
variables (density, pressure and normal velocity)
first, and then substitute them into Eq. (8) to
compute F,. The density, normal velocity and

pressure can be computed by
4
_ “interface
o= 2 Si
i=1
1
‘OU,, — Ef‘:mcrfacce :

i=1

1 L 2| . interface l
(7y71p+2pU,,)f§f[ (Ze,e,JrAj

(12¢)

where ¢; is the lattice velocity, e, =d e, =—d, ,

(12a)

(12b

es=dyse,=—dy, A= [1*%(7—1)} is the po-

tential energy of particles (D is the dimension of
space and takes 1 for the 1D model). The tangen-
tial density U, at the cell interface can be given
from mean value of Ut and UY, where Ut and U®
are the tangential velocity at the left and right
side of cell interface, respectively. Alternatively,

it can be approximated by

4
pUr — 2 fil_ntcr{acc . Ur i

i=1
Dogh UL+ D gk Uk (13)

i=1.3 i=2,4

Once the density, pressure, normal velocity and
tangential velocity at the cell interface are compu-
ted by Egs. (12—13), they can be substituted in-
to Eq. (8) to compute F,. This way is equivalent
to use equilibrium distribution functions at the
cell interface to compute F,. From CE analysis,
this way has very little numerical dissipation,
which may not be able to get stable solution for

problems with strong shock waves. To compute
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F, with numerical dissipation, we can use distri-
bution function given in Eq. (11) to compute F,
directly. In fact, pU, in F, has been calculated by
Eq. (12b). Other terms in F, can be computed by
the following formulations

4
‘OU,, U” + p — Z fi[mcrfm-celel (14)

i=1

7 L 2 _ 4 “interface i
(77711)-5— Z(OU,,)U,,—IZ;]‘,- e,(ze,e;—i—/\)

(15)
Similar to Eq. (13), pU,U, and pU, |U. |* can be

approximated by
4
(OU,, Ur — 2 f‘lintcr[accei o Ur —
i=1

Dogle, UM+ D ghe, « U (16)
=24

i=1,3

1
oU, |U. |? = Efi{mcrfaccei U, |t =
i=1

Dlgle, <UL 24+ Dl ghe, | U 2 (D)
i=2.4

i=1,3

Overall, the basic solution procedure of this
LLBFS can be summarized below .

(1) At first, we need to choose a 1D LB
model such as non-free parameter D1Q4 model.
The LB model provides expressions for equilibri-
um distribution functions and lattice velocities.

(2) For the considered cell interface with u-
nit normal vector n = (n,,n,,n.), obtain flow
variables (density, pressure, velocity compo-
nents) at the left and right sides of interface from
two neighbouring cell centers (MUSCL interpola-
tion with limiter may be used for high-order
schemes). Then use Egs. (3, 5) to calculate the
normal and tangential velocities at the left and
right sides of interface.

(3) Use Eq. (9) to calculate g, g5 .g5.g% by
using density, pressure and normal velocity.

(4) Compute the density, normal velocity,
pressure and tangential velocity at the cell inter-
face by using Eqs. (12—13), and then substitute
them into Eq. (8) to calculate numerical flux F,.
Alternatively, use Egs. (12b), (14—17) to com-
pute F, directly (this way is recommended for hy-
personic {lows with strong shock waves).

(5) Once numerical fluxes at all cell inter-

faces are obtained, solve ordinary differential

equations (6) by using 4-stage Runge-Kutta
scheme.

For simulation of viscous flows, one also
needs to use a smooth function to approximate

the viscous flux.

3 Lattice Boltzmann Flux Solver
( LBFS ) for

Flows

Incompressible

[22, 32]

From C-E expansion analysis , the in-

compressible Navier-Stokes (N-S) equations

%47 u) =0 (18)
ﬂ%:—v e Cou) — V p+vV -
[Vou+ (Vou)']=—V « 11 (19
can be recovered by the following LBE
folr+ed, st +0) = f.(r,t) +
ff,q(r,z‘)ffa(r,t)

T

,a=0,1,-,N (20)

where p is the fluid density, u the flow velocity
and p the pressure. r represents a physical loca-
tion, 7 is the single relaxation parameter; f, is
the density distribution function along the a direc-
tion; [ is its corresponding equilibrium state; &,
is the streaming time step and e, is the particle
velocity in the a direction; N is the number of
discrete particle velocities. The relationships be-
tween the density distribution functions and flow
variables as well as fluxes in the N-S equations
are

N
o=, f 21

a=0

o, = D e f (22)
a=0

N
Oy = D epen [f’i“ + (1 — %Tjeff,“} (23)

a=0

where 8 and 7 represent the space coordinate di-
rections, and e, is the component of the lattice
velocity vector e, in the ff-coordinate direction. As
shown in Ref. [22, 32], to recover N-S equations

by Eq. (20), ef{" can be approximated by
d
[ e ==, (Z+e" | ij‘s“ 2o

Substituting Eq. (24) into Eq. (23) gives



6 Transactions of Nanjing University of Aeronautics and Astronautics

Vol. 31

N
= Deses| fot (1= ) r ] @)
a=0 T

eq

The equilibrium distribution function f¢' depends
on the lattice velocity model used. For example,
when the following two-dimensional D2Q9 lattice

velocity model

0 a=0
(cos[(a*l)%} ,sin[(a—l)%Dc
e, = a=1,2,3,4

ﬁ(m[( g

e g i)

=5,6,7,8

(26)

is used, [ can be given by

. . Z (¢ 2
fﬁ“(r,t):{awa[1+eac2“+(ea u) 264(“ ul) }

@7
where ¢=4,/6,, 0. is the lattice spacing. For the
case of 0, =38,, which is often used in the litera-
ture and also adopted in this work, ¢ is taken as
1. The coefficients w, and the sound speed ¢, are
w, =4/, w, =w, =w; =w, = 1/9 and

c.=c/v3. The relaxa-

tion parameter 7 is linked to the kinematic viscos-

given as;
ws = ws =w; =ws = 1/36.
ity of fluid through C-E expansion analysis by the

following relationship
U:(T*i) 2o, (28)

The pressure can be calculated from the
equation of state by

pz‘ocf (29)

Using Egs. (22) and (23), for the two-dimen-

sional case, Eqs. (18) and (19) can be rewritten

as
IW IE (')F
5 Tty (30)
where
o P, P,
W={ou} E=1I, ., F=1II, 31)
I, 11,
N
P, =D e, fo (32a)
a=0
P,= D e[ (32b)

N
II.. = Z eweu | [0+

a=0 L

fual (33a)

a=0 L

fual (330

N ~ _

O, =D eaen | [+ (1 - zi)f (33b)
N

I, = Zeweu [+ ( )

i eq _L m‘q_
= Sewen [+ (1=

(33d>

When a Cell—centered FVM is applied to solve
Eq. (30), the flow properties p and pu at the cell
center can be obtained by marching in time. The
fluxes at the cell interface can be evaluated by lo-
cal reconstruction of LBM solution. By integra-
ting Eq. (30) over a control volume ,, we have
aw,
N (34)

R, = (nE+n,F),
where AV, is the volume of 2., and AS, is the ar-

ea of the kth control surface enclosing ;. n, and

n, are the x and y components of the unit outward

Obvi-

ously, once the fluxes at all cell interfaces are

normal vector on the kth control surface.

known, Eq. (34) can be solved by well estab-
lished numerical schemes such as the 4-stage
Runge-Kutta method. Thus, the evaluation of
flux R, at the cell interface is the key in the solu-
tion process. The detailed expression of R, de-
pends on the lattice velocity model. By defining

f. as
fo = (1= ) e (35)
When the D2Q9 lattice velocity model is used, R,
can be written in detail as follows
R.=
L (TS5 (4 f57) i, (5[ (54 f5)
T4 A b )
ne(fs =fe Tf7 =fs Y tuy (f2 +fi Tfs Tf /7 tfs)
(36)
Obviously, the key issue in the evaluation of the

"eq

flux R, is to perform an accurate evaluation of f§
and f,

will show the detailed calculation of f¢* and f, at

at the cell interface. In the following, we

the cell interface.

Consider a cell interface between two control
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cells 2; and £,., as shown in Fig. 4. It is assumed
that the physical location for the two cell centers

and their interface is r;, r;+; and r respectively.

eq
8

ffq:

W, @ O—C

7

ox

Fig.4 Local reconstruction of LBM solution at a cell

interface

Using Taylor series expansion, we have

falry) — f(r—ed, .t —08,) =
d )
0, (aJrea . Vjﬂ“ + 00 37

From Egs. (37) and (24), we can get the follow-
ing form
frilr, ) =f1(r—ed,,» t—0,) =
— o [fo(r.a) — [ (r—ed, .t — 8]+ 06

(38)

Eq. (38) shows that once we have the equilibrium

distribution functions [ (r,2), f9(r—el,+t—

0,) at the cell interface and its surrounding

points, we can have the full information of distri-

bution function at the interface. Note that the ap-

proximation for Eq. (38) is the second order of

accuracy in &,. Using Eq. (27), the equilibrium

distribution function f{ can be computed from

the fluid density p and flow velocity u. With the

given density and velocity at the cell center, the

respective density and velocity at location (r —

e,0,) can be easily obtained by interpolation. One

of interpolation forms can be written as

olr—en,)=

olr)+r—ed,—r;) « Volr),
when r—e,d, is in the cell 2,
olre)+r—ed,—r) » Volri),

when r—e,0, is in the cell ;.

39

u(r—ed,)=

u(r,))t+(r—ed,—r;) * Vulr,),
when r—e,0, is in the cell £,

u(ri.1)+(r*en8,*r,'.1) * Vu(r,»\l),

r—e,0, is in the cell Q,,

(40)

when
With computed p(r —e,) and u (r —e,d,) by
Egs. (39, 40), f(r—e,,.t—3,) can be calculat-
ed by Eq. (27). Now, we are only left to deter-
mine f.'(r,t) as shown in Eq. (38). Again, with
Eq. (27), the calculation of f(r,t) is equivalent
to computing p(r,¢) and u(r,¢). Using Eqgs. (21,
22), the conservative variables p and pu can be

computed by

o(rat) = > f.(ro) 4D
a ()N
o(raDulrat) = > f.(r.De, (42)

Since f, can be written as £+ f7*, application of
Eq. (20) at the cell interface leads to
fo(rst) = f(r—e,0,,t —0,) +

(1—%jf2"q(r—en8f,t—8,) (43)

Furthermore, by substituting Eq. (38) into

Eq. (43), we obtain

foro) =0 =) fr.0) +of2(r—ed, .t —0,)
44>

Equation (44) is actually equivalent to f,(r.t) =

folr,t) + f2 (r,t). Finally, Summation of

Eq. (44) over a and applying the compatibility

condition gives

N
o(ra) = D fi(r—ed,.t—8,)  (45)

N
o(rsDulr,t) = Efi“(rfeﬁ, st —308,)e, (46)

a=0

where f(r—e,,,t—05,) has already been calcu-
lated previously. Once f¢'(r—ed,,t—3,) and
f(r,t) are obtained, f7** can be approximated
using Eq. (38), and f, can be easily computed
from Eq. (35).

Egs. (45, 46) show that the conservative
flow variables at the cell interface are fully deter-
mined from the equilibrium distribution functions
at the surrounding points. As equilibrium distri-
bution functions only depend on the macroscopic

flow variables, there is no need to store the densi-
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ty distribution functions for all the time levels. In
fact, at any time step, we locally reconstruct a
LLBM solution at each cell interface independent-
ly. The reconstruction process is applied locally
and repeated from one time level to another time
level. Overall, the basic solution procedure of
LBFS can be summarized below:

(1) At beginning, we need to choose a lattice
velocity model such as D2Q9 model. Then we
need to specify a streaming time step 0,. The
choice of 8, should satisfy the constraint that the
location of (r —e,8,) must be within either the
cell 2; or the cell Q2;.,. Note that as local LBM
solution is reconstructed at each cell interface,
different interfaces could use different 8,. This
provides a great flexibility for application if we
use non-uniform mesh or solve problems with a
curved boundary. Once &, is chosen, the single
relaxation parameter 7 in LBFS is calculated by
Eq. (28).

(2) For the considered interface position r, i-
dentify its surrounding positions (r —e,,), and
then use Egs. (39, 40) to compute the macro-
scopic flow variables at those positions.

(3) Use Eq. (27) to calculate the equilibrium
density distribution function f{(r—e,0,,t—3,).

(4) Compute the macroscopic flow variables
at the cell interface by using Eqs. (45) and (46),
and further calculate f"(r,t) by Eq. (27).

(5) Calculate f29(r,t) by using Eq. (38).

(6) Compute the fluxes at the cell interface
by Eq. (36).

(7) Once fluxes at all cell interfaces are ob-
tained, solve ordinary differential Eq. (34) by
using 4-stage Runge-Kutta scheme.

It is indicated that the present LBFS can be
used to simulate both incompressible viscous
flows and incompressible inviscid flows. For the
inviscid flow, we just simply set z=0.5. Anoth-
er point to note is that the time marching step
used in solving Eq. (34) and the streaming time
step 0, used in LBFS are independent. &, can be

selected differently at different interface and dif-

ferent time level. Numerical experiments show

that 8, has no effect on the solution accuracy.

4 Numerical Examples and Discus-

sion

In this section, the developed LBFS is valida-
ted by its application to solve some test prob-
lems. In all following simulations, the non-free
parameter D1Q4 model™*" is used for simulation
of compressible inviscid flows, and the D2Q9 lat-
tice velocity model is applied for simulation of

two-dimensional incompressible viscous flows.

4.1 Simulation of two-dimensional compressible

inviscid flows

At first, the LBFS developed in Section 2
will be applied to simulate three two-dimensional
compressible inviscid flows. They are the flow a-
round a NACAO0012 airfoil, the flow around a for-
ward facing step, and the flow around a circular
cylinder. For the flow around the NACA0012 air-
foil, the free-stream Mach number is taken as 0. 8
and the angle of attack is chosen as 1. 25°. Un-
structured grid with 10 382 cells is used for nu-
merical computation. Both LBFS and Roe scheme
are applied to solve this problem on the same
computational mesh. It was found that the pres-
sure coefficient distributions obtained by LBFS
and Roe scheme are close to each other. The lift
and drag coefficients (C, and C,) obtained by
LBFS are respectively 0. 304 1 and 0. 023 7,
which agree well with the results given from Roe
scheme (C,=0. 283 6, C4=0.021 5 ) and those of
Stolcis and Johnston™! (C, = 0. 339 7, C, =
0.022 8). Fig. 5 shows the pressure contours
around the airfoil. As can be seen clearly, the
shock wave on the upper surface is well captured
by present solver. The second test example in
this part is a stationary flow (Mach number
equals 3) hitting a rectangular step. This problem
has been well studied by Woodward and Colel-
1", and is often used to investigate perform-

ance of new numerical methods for capturing the
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shock waves.

mesh size of 300 X100 is used. Fig. 6 shows the

In our computation, a uniform

density contours computed by present solver.
Our results are in good agreement with those in
Ref. [36]. Tt is noted that no special treatment
around step corner is made in the present compu-
tation, which is often needed by conventional
schemes. To further explore the capability of
present solver for simulation of hypersonic flows
with strong shock waves, the flow around a circu-
lar cylinder is simulated. For this case, a uniform
mesh size of 160X 40 in the cylindrical coordinate
system is used. It is well known that for this
problem, conventional numerical schemes such as
Roe scheme may encounter the ”"carbuncle phe-
nomenon” in front of cylinder when the free
stream Mach number is high. The " carbuncle
phenomenon” may be due to unsatisfying of entro-
py condition and negative value of density in the
local region. We have used different free-stream
Mach numbers to test simulation of this problem
by LBFS. For all the cases tested (free-stream

Mach number up to 100), no "carbuncle phenom-

Pressure

\ ‘ 1.57

S\ / 1.50

2 143

\ j 136

NS

e Bl

‘ 1.07
/

\f
0.99
\ 0.92
0.85
0.78
0.70
0.63
0.56

N/

Fig.5 Pressure contours around NACA0012 airfoil

1.0

051

0.0

0.0

Fig. 6 Density contours for flow around a forward fa-

cing step

enon” was found in the present results. This can
be seen clearly from Fig. 7, which shows pressure
contours of Ma =3 and 100. Both results show

regular pressure distribution around the cylinder.

(2) Ma=3.0 (b) Ma=100.0
Fig. 7 Pressure contours for flow around a circular

cylinder

4. 2 Simulation of compressible inviscid flows
around ONERA M6 wing

To investigate the capability of present LBFS
for solving practical flow problems, the three-
dimensional (3D)
ONERA M6 wing is simulated. This is also a

standard test case for 3D computations. For

transonic flow around the

numerical simulation, the free-stream Mach num-
ber is taken as 0. 839 5 and the angle of attack is
chosen as 3. 06°. The part of computational mesh
is shown in Fig. 8, which has 294 912 cells. The

pressure contours obtained by present solver are

Fig. 8 Partial view of computational mesh for flow

around ONERA M6 wing
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displayed in Fig. 9. The "A” shape shock wave on
the upper surface of the wing can be seen clearly
in Fig. 9, which is in line with the result in
Ref. [37]. The pressure coefficient distribution at
a section of 2/6=0. 65 is shown in Fig. 10. Also
included in Fig. 10 are the experimental data given
in Ref. [38]. As can been clearly, the present re-
sults quantitatively compare very well with the

experimental data.

Fig. 9 Pressure contours around ONERA M6 wing

08t Section 3 (z/6=0.65)
1.0 1 1 1 1 1 1
0.0 0.2 0.4 0.6 0.8 1.0
x
Fig. 10 Pressure coefficient distribution at section of

2/b=0. 65 on M6 wing

4.3 Simulation of incompressible lid-driven flow

in a square cavity

The lid-driven flow in a square cavity is a
standard test case for validating new numerical
methods in simulation of incompressible viscous
flows. The flow pattern of this problem is gov-
erned by the Reynolds number defined by Re =
UL /v, where U is the lid speed, L is the length of
the cavity, and v is the kinematic viscosity of flu-

id. Two cases of this problem at moderate and

high Reynolds numbers of 3 200 and 7 500 are
considered in this work. LBFS introduced in Sec-
tion 3 will be applied to solve this problem and
the following problems.

To conduct numerical simulations, the non-
uniform grid is generated according to the follow-

ing formulation

S P i—1 1.2,
xi—z[l COS(N*1KJ:|’ 1=1,2,,N

(47a)

Ly j—1 P 1.9
3’;‘_2[1 cos(M_ln)}, j=1,2,-- M
(47b)

where N and M are the total number of mesh

points in the x and y directions respectively. With
Eq. (47), the non-uniform grids of 101 X 101 for
Re=3 200 and 121 X121 for Re=7 500 are used
respectively. In the present study, we set U=0. 1
and L=1. The initial flow field is at rest.

Table 1 compares the locations of the prima-
ry vortex centers at Re=23 200 and 7 500 obtained
by LBFS with those given by Ghia et al®. As
can be seen, the maximum relative error between

1897 is less

present results and those of Ghia et a
than 1. 1%. Fig. 11 displays wu-velocity profile
along the horizontal centerline and v-velocity pro-
file along the vertical centerline of the considered
two cases. As can be seen from this figure, the
present results agree very well with those of Ghia

197, Fig. 12 shows the streamlines of Re =

et a
3200, 7 500. The most striking aspect of this
figure is that the Reynolds number apparently has
unique effect on flow patterns. Secondary and
tertiary vortices appear and evolve into larger

ones as Re becomes large. These results and ob-

servations are in good agreement with those of

Ghia et al®",

Table 1  Locations of primary vortex centers at
different Reynolds numbers
Vortex center (x, y)
Re

Ref. [39]
3200 (0.516 5,0.546 9)(0.518 6,0.5412)
7 500 (0.511 7,0.532 2)(0.514 6.0.533 6)

Present
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(b) Re=7 500, 121 X121

Fig. 11

Re=3 200

Re=7 500

Fig. 12 Streamlines of a lid-driven cavity flow at Re=

3200, 7 500

Note that for this test example, we have also
studied the effect of streaming distance in local
reconstruction of LBM solution. It was found
that when the streaming distance is less than half
of mesh spacing in the two neighboring cells (this
constraint guarantees that only interpolation is
performed in each cell), any value of streaming
distance will have no effect on the accuracy of
solution. This is an appealing feature, which en-

sures that LBFS can be easily applied on non-uni-

form mesh.

u and v velocity profiles along horizontal and vertical centerlines for a lid-driven cavity flow at Re=3 200, 7 500

4. 4 Simulation of incompressible polar cavity

flow

Although the complex lid-driven cavity flows
have been successfully simulated to validate the
present solver, the geometry of the cavity which
only involves straight boundaries is nevertheless
simple. To further illustrate the capability of
LBFS for problems with curved boundary, a polar
cavity flow is simulated on body-fitted meshes.
The schematic diagram and the typical non-uni-
form mesh for this problem are depicted in
Fig. 13. As shown in Fig. 13, a sector with an an-
gle of /=1 is bounded by two straight walls and
two curved walls with radii of R; and R,. The in-
ner curved wall rotates with an azimuthal velocity
of U,. The flow pattern of this problem is gov-
erned by the Reynolds number defined as Re =
U,R;/v. In this study, two cases of Re=60 and
1 000 are considered, and the following parame-
ters are applied: Ri=1.0, R,=2.0, p,=1.0 and
U, = 0. 1. Initially, the flow field is at rest.

Fig. 14 shows the radial («,) and azimuthal Cu,)
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velocity profiles along the horizontal line of =
0.5 at Re=60 and 1 000. The experimental re-
sults of Fuchs and Tillmark"" and the numerical
solutions of Shu et al®*" obtained by applying
Taylor series expansion- and least-square-based
LBM (TLLBM) are also included for compari-
son. Note that the present results and TLLBM
results are both obtained on the same non-uni-
form grids, i.e., 61 X61 for Re=60 and 81 X 81
for Re=1 000. It can be seen that good agree-
ments have been achieved between the present re-
sults and those of Fuchs and Tillmark"* and Shu
et al', which validate the reliability of the pres-
ent solver for problems with curved boundary and
use of non-uniform grid. The streamlines are
shown in Fig. 15. As can be seen, with increase
of the Reynolds number., the primary vortex
moves upward and reduces its size. At the same
time, the two secondary vortices at the upper-
right and lower-right corners enlarge their size.
These observations agree well with those of
Fuchs and Tillmark™®,

Fig. 13 Schematic diagram and a typical body-fitted

mesh for flow in a polar lid-driven cavity

4.5 Simulation of flow induced by an impulsively

started cylinder

In this part, LBFS is applied to simulate the
unsteady flow induced by an impulsively started
circular cylinder. The Reynolds number of this
flow is defined as Re=UD /v, where U is the free-
stream velocity and D is the diameter of cylinder.
A wide range of Reynolds numbers from 10° to
10" are considered in this study to further demon-

strate the capability of LBFS for effective simula-

Vol. 31
1.0
— Present
07l 4 Fuchs and Tillmark *”
’ TLLBM *"

04
oy
2
o
ot} Uy

-02
ur
_05 1 1 1 1
1.0 1.2 14 1.6 1.8 2.0
r
(a) Re=60
1.0
—— Present

0.7 e TLLBM™
ey
Q
=]
2

1.0 1.2 1.4 1.6 1.8 2.0

(b) Re=1 000

Fig. 14 Comparison of radial (u,) and azimuthal (u,)
velocity profiles along the horizontal line of

0=0.5 for the polar cavity flow

Re=1 000 |

Fig. 15 Streamlines for the polar cavity flow at Re=

60 and 1 000

tion of unsteady flows at high Reynolds numbers.
In the present simulation., for flows at
Re=550 and 3 000, a mesh size of 301 X201 is

used and the outer boundary is placed at 15 diam-
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eters away from the cylinder center. For the flow
at Re=9 950, the computational mesh is set as
301X 351 and the outer boundary is set as 4 diam-
eters away from the cylinder center. The flow pa-
rameters are set as: p=1.0, U=0.1 and a=0. 5.
Initially, the flow field is at rest.

For incompressible flows around the circular
cylinder at high Reynolds number, a pair of pri-
mary symmetric vortices will be developed at the
rear of cylinder initially. With increase of the
Reynolds number, the size of the two vortices is
decreased. As time increases, the primary vorti-
ces will move away and detach from the rear of
cylinder. In the meantime, a pair of secondary
symmetric vortices appears and becomes larger
and stronger. The vortex structures exhibit the
so-called "a”" and "’ patterns. All these features
have been well captured in present simulation. To
save the space, these results are not displayed in
this paper. Fig. 16 shows a quantitative compari-
son of the time evolution of the vortex length
with experimental data of Bouard and Cou-

121 Obviously, good agreement has been

tanceau
achieved. For Re=550, the vortex length almost
grows linearly with respect to time. For high
Reynolds numbers (Re=3 000 and 9 500) , a slow
increase in vortex length, which corresponds to
the "fore-wake” region, can be observed when ¢<C
3.0 s. When t>3 s, a fast growth of the vortex

length can be seen due to destruction of the "fore-

3.0

—— Present
e Bouard and Coutanceau *”
2.5¢
2.0F
~ 1.5k
1.0F
0.5F
0.0
0 1 2 3 4 5 6 7
T
Fig. 16 Comparison of the vortex length for flow in-

duced by impulsively started cylinder at dif-

ferent Reynolds numbers

wake”. Fig. 17 further compares the radial veloci-
ty along the symmetric axis at Re=3 000 with ex-

121 and

perimental data of Bouard and Coutanceau
numerical results of Niu et al®**, Once again,

good agreement is achieved.

3
—— Present
¢ Niuetal™
2 e Bouard and Coutanceau'”

_2 1 1 1
1.0 1.5 2.0 2.5 3.0
X
Fig. 17 Comparison of the radial velocity along sym-

metric axis for flow induced by impulsively

started cylinder at Re=3 000

5 Conclusions

In this paper, the LBFS is presented for sim-
ulation of compressible and incompressible flows.
The solver is based on numerical discretization of
FVM to the governing differential equations
(Navier-Stokes equations or Euler equations).
Specifically, the conservative flow variables at
cell centers are given from the solution of discrete
governing equations but numerical fluxes at cell
interfaces are evaluated by local reconstruction of
LBE solution from flow variables at cell centers.
Two versions of LBFS are presented in this pa-
per. One is to locally apply 1D compressible LB
model along the normal direction to the cell inter-
face for simulation of compressible inviscid flows.
The other is to locally apply incompressible LB
model at the cell interface for simulation of in-
compressible viscous flows.

The present LBFS is well validated by its ap-
plication to simulate some two- and three-dimen-
sional compressible inviscid flows, and two-
dimensional incompressible viscous flows. Nu-
merical results show that the compressible ver-
sion of LBFS can well simulate compressible in-

viscid flows with strong shock waves, and its in-
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compressible version can accurately simulate in-

compressible viscous flows with curved boundary

and non-uniform mesh. It removes the drawbacks

of conventional LBM such as limitation to the u-

niform mesh, tie-up of mesh spacing and time in-

terval. It is believed that LBFS has a great poten-

tial for solving various flow problems in practice.

References:

[1]

[2]

(3]

[4]

[5]

[6]

7]

[8]

(9]

[10]

[11]

(12]

[13]

[14]

Roach P J. Computational fluid dynamics{ M]. Her-
mosa Beach, USA: Hermosa Press, 1972.
Anderson D A, Tannehill ] C, Pletcher R H. Com-
putational fluid mechanics and heat transfer [ M.
New York, USA: McGraw-Hill, 1984.

Hirsch C. Numerical computation of internal and ex-
ternal flows[M]. Hoboken, USA: John Wiley &
Sons, 1988.

Fletcher C A J. Computational techniques for fluid
dynamics: fundamental and general techniques[ M.
Berlin, Germany: Springer-Verlag, 1991.
Anderson ] D. Computational fluid dynamics: the
basics with applications [ M]. New York, USA:
McGraw-Hill, 1995.

Versteeg H K, Malalasekera W. An introduction to
computational fluid dynamics: the finite volume
method[ M]. Harlow, England: Longman Scientific
&. Technical, 1995.

Donea J, Huerta A. Finite element methods for flow
problems[ M]. Hoboken, USA: John Wiley, 2003.
Wendt J F. Computational fluid dynamics[ M]. Ber-
lin, Germany: Springer Berlin Heidelberg, 2009.
Funaro D. Polynomial approximation of differential
equations[ M ]. Berlin, Germany: Springer-Verlag,
1992.

Buhmann M D. Radial basis functions: theory and
implementations[ M]. Cambridge University Press,
2003.

Godunov S K. A difference method for numerical cal-
culation of discontinuous solutions of the equations of
hydrodynamics[ J]. Matematicheskii Sbornik, 1959,
47. 271-306.

Roe P L. Approximate Riemann solvers, parameter
vectors, and difference schemes[]J]. Journal of Com-
putational Physics, 1981, 43 357-372.

Steger ], Warming R. Flux vector splitting of the in-
viscid gas dynamic equations with applications to fi-
nite-difference methods[J]. Journal of Computational
Physics, 1981, 40.: 263-293.

Shu C W, Osher S. Efficient implementation of es-

[15]

[16]

[17]

[18]

[19]

[20]

[21]

(22]

(23]

[24]

(25]

[26]

[27]

[28]

sentially non-oscillatory shock-capturing schemel[ ] ].
Journal of Computational Physics, 1988, 77. 439-
471.

Shu C W. High order weighted essentially non-oscil-
latory schemes for convection dominated problems
[J]. SIAM Review, 2009,51:82-126.

B van Leer, Lo M. A discontinuous Galerkin method
for diffusion based on recovery[ J]. Journal of Scien-
tific Computation, 2011,46.:314-328.

Xu K. A gas-kinetic BGK scheme for the Navier-
Stocks equations and its connection with artificial dis-
sipation and Godunov method[J]. ] Comput Phys,
2001,171:289-335.

Chen SZ, Xu K, Lee C B, et al, A unified gas kinet-
ic scheme with moving mesh and velocity space adap-
tation[ J]. Journal of Computational Physics, 2012,
231:6643-6664.

Yang L M, Shu C, Wu J, et al. Circular function-
based gas-kinetic scheme for simulation of inviscid
compressible flows[ J]. J Comput Phy, 2013, 255
540-557.

Chen S, Chen H, Martinez D, et al. Lattice Boltz-
mann model for simulation of magnetohydrodynamics
[J]. Phys Rev Let, 1991,67(27):3776-3779.
Qian Y H. D’ Humieres D, Lallemand P.
BGK models for Navier-Stokes equation[ J]. Euro-
phys Lett, 1992,17:479-484.

Chen S, Doolen G.
fluid flows[J]. Ann Rev Fluid Mech, 1998,30:329-
64.

Mei R, Luo L S,

Lattice

Lattice Boltzmann method for

Shyy W. An accurate curved
boundary treatment in the lattice Boltzmann method
[J]. J Comput Phys, 1999,155:307-330.

Guo Z L., Shi B C, Wang N C. Lattice BGK model
for incompressible Navier-Stokes equation []J]. J
Comput Phys, 2000,165:288-306.
Shu C, Chew Y T, Niu X D. Least square-based
LBM: a meshless approach for simulation of flows
with complex geometry[ J]. Phys Rev E, 200164,
045701.

Shu C, Niu X D, Chew Y T. Taylor series expan-
sion- and least square-based lattice Boltzmann meth-
od: two-dimensional formulation and its applications
[J]. Phys Rev E, 2002,65:036708 .

Succi S, Mesoscopic modeling of slip motion at fluid-
solid interfaces with heterogeneous catalysis [ J J.
Phys Rev Lett, 2002,89:064502.

Shan X, Yuan X F. Chen H. Kinetic theory repre-

sentation of hydrodynamics: a way beyond the Navi-



No. 1

Shu Chang, et al. Lattice Boltzmann Flux Solver:

An Efficient Approach for -+ 15

(29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

er-Stokes equation[J]. ] Fluid Mech, 2006,550:413-
441,

Guo Z L, Asinari P, Zheng C G. Lattice Boltzmann
equation for microscale gas flows of binary mixtures
[I]. Phys Rev E, 2009,79:026702.

Aidun C K, Clausen ] R. Lattice-Boltzmann method
for complex flows[J]. Ann Rev Fluid Mech, 2010,
42:439-72.

Wu J, Shu C. A solution-adaptive lattice Boltzmann
method for two-dimensional incompressible viscous
flows[J]. J Comput Phys, 2011,230:2246-2269.
Guo Z, Shu C. Lattice Boltzmann method and its ap-
plications in engineering[ J]. World Scientific Pub-
lishing, 2013.

Yang L. M, Shu C, Wu J. Development and compar-
ative studies of three non-free parameter lattice Boltz-
mann models for simulation of compressible flows
[I]. Adv Appl Math Mech, 2012,4:454-472.

Yang L. M, Shu C, Wu J. A moment conservation-
based non-free parameter compressible lattice Boltz-
mann model and its application for flux evaluation at
cell interface[ J]. Comput Fluids, 2013,79:190-199.
Stolcis L, Johnston L J. Solution of the Euler equa-
tions on unstructured grids for two-dimensional com-
pressible flow [ J]. Aeronautical Journal, 1990, 94
181-195.

Woodward P, Colella P. The numerical simulation of
two-dimensional fluid flow with strong shocks[]].

Journal of Computational Physics, 1984,54:115-173.

[37]

[38]

[39]

[40]

[41]

[42]

[43]

Batina J T. Accuracy of an unstructured-grid upwind-
Euler algorithm for the ONERA M6 wing[JJ. J Air-
craft, 1991,28:397-402.

Schmitt V, Charpin F. Pressure distributions on the
ONERA-M6-wing at transonic Mach numbers, ex-
perimental data base for computer program assess-
ment[J]. Report of the Fluid Dynamics Panel Work-
ing Group 04, 1979, AGARD AR:138.

Ghia U, Chia K N, Shin C T. High-resolutions for
incompressible flow using the Navier-Stokes equa-
tions: a multigrid method [J]. J Comput Phys,
1982,48:387-411.

Fuchs L, Tillmark N. Numerical and experimental
study of driven flow in a polar cavity[J]. Int J] Num
Methods in Fluids, 1985,5:311-329.

Shu C, Niu X D, Chew Y T. Taylor series expan-
sion- and least square-based lattice Boltzmann meth-
od: two-dimensional formulation and its applications
[J]. Phys Rev E, 2002,65:036708.

Bouard R, Coutanceau M. The early stage of devel-
opment of the wake behind an impulsively started
cylinder for 40<<Re<C10'[J]. ] Fluid Mech, 1980,
101:583-607.

Niu X D, Chew Y T, Shu C. Simulation of flows
around an impulsively started circular by Taylor se-
ries expansion- and least squares-based lattice Boltz-
mann method[J]. J Comput Phys, 2003, 188: 176-
193.

(Executive editor: Zhang Tong)



