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Abstract: A time-varying modal parameter identification method combined with Bayesian information criterion
(BIC) and grey correlation analysis (GCA) is presented for a kind of thermo-elastic structures with sparse natural
frequencies and subject to an unsteady temperature field. To demonstrate the method, the thermo-elastic structure
to be identified is taken as a simply-supported beam with an axially movable boundary and subject to both random
excitation and an unsteady temperature field, and the dynamic outputs of the beam are first simulated as the meas-
ured data for the identification. Then, an improved time-varying autoregressive (TVAR) model is generated from
the simulated input and output of the system. The time-varying coefficients of the TVAR model are expanded as a
finite set of time basis functions that facilitate the time-varying coefficients to be time-invariant. According to the
BIC for preliminarily determining the scope of the order number, the grey system theory is introduced to determine
the order of TVAR and the dimension of the basis functions simultaneously via the absolute grey correlation degree
(AGCD). Finally, the time-varying instantaneous frequencies of the system are estimated by using the recursive
least squares method. The identified results are capable of tracking the slow time-varying natural frequencies with
high accuracy no matter for noise-free or noisy estimation.
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1 Introduction

Hypersonic flight vehicles are subject to very
tough aerodynamic load and heating during their
missions"'!. The aerodynamic heating produces
adverse effects on the dynamic performance of a
hypersonic flight vehicle, and even results in

strong vibrations or dangerous flutters-*,

From
the view point of structural dynamics of hyper-
sonic flight vehicles, the severe aerodynamic
heating not only reduces the mechanical proper-
ties, such as Young's modulus, of any structural

material, but also gives rise to the dangerous

thermal stress in any constrained structural com-
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ponent. Hence, the heated structure in a hyper-
sonic flight vehicle undergoes the change of struc-
tural stiffness in both quantity and distribution,
as well as the change of modal parameters, with
an increase of heating time. That is, the heated
structure of a hypersonic flight vehicle is a time-
varying system, which features the vibration
modes with time-varying properties.

The studies on the dynamic analysis of
thermo- elastic structures, such as beams and
plates, under constant or time-varying tempera-
ture environment have been quite extensive"*!,

For example, Avsec and Oblak studied how the
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temperature field had an impact on the vibration
of beams and found that a small change of tem-
perature might cause significant changes of natu-
ral frequencies of beams'™. Xiao and Chen
analyzed the buckling and vibration problems of a
thin elastic-plastic square plate with four immova-
bly simply-supported edges in a uniform tempera-
ture field"”. Huang and Wang analyzed the
modal of a variable-thickness plate under the
transient thermal environment, and derived the
modal parameters at different moments™’. To the
best knowledge of authors, the studies on the
thermo-elastic structure dynamics mainly focuse
on the direct problems of analysis, instead of the
inverse problems, such as system identification or
input identification.

The time-varying vibration modes occur not
only in the heated structure of a hypersonic flight
vehicle in a real mission, but also in such a struc-
ture in a thermal-vibration test on ground. As a
matter of fact, it is very difficult to keep a long
steady heating for such a structure during the
thermal test, especially in the case of extremely
high temperature. It is thus necessary to deal
with the time-varying modal problem of thermo-
elastic structures. For model verification and
heated structure validation, it is important to
identify the time-varying vibration modes of a
heated structure by its thermal-vibration meas-
ured in a ground test.

The dynamic identification and parameter
estimation for a time-varying linear system are
the forefront of the inverse problem in structural
dynamics. Two major kinds of methods have
been developed for such inverse problems. One is
the time-frequency methods, such as the Gabor
transform and wavelet transform™'. The other
is the time series methods, such as time-varying
autoregressive (TVAR) method and time-varying
( TVARMA)

autoregressive moving average

method™**.  Approaches for estimating the

TVAR parameters can be classified into two cate-

gories, namely, the adaptive algorithm and the
basis function method. Even though the adaptive
algorithm can track the slowly time-varying fre-
quency or the frequency jump efficiently. they are
sensitive to measurement noise and initial condi-
tions. They also fail to track the time-varying fre-
quencies of a system in which frequencies change
very fast or change in a wide range''®’. The basis
function expansion and regression approach has
the excellent capability of tracking time-varying

16:1920] ~ However, the selec-

system parameters
tion of expansion dimension is questionable since
there is no theoretical criterion for the selection.
Recent attention has been paid to the practi-
cal problem for selecting order p of the autore-
gressive ( AR) model and dimension m of the
basis functions. Many criteria have been proposed
because the problem of model selection arises
frequently in regression analysis. Final prediction
error (FPE) criterion, Akaike information crite-
rion (AIC) and Bayesian information criterion
(BIC) are the most popular methods for selecting
orderst??. However, the FPE, AIC and BIC
functions are often not strictly concave down, and
sometimes are accompanied by random fluctua-
process for selecting

tions, in the actual

orderst**,

This problem may let the criterion
function reach a certain value without any obvi-
ously changing trend, but oscillating up and down
randomly, which sequentially affects the correct-
ness and effectiveness of order selection. Further-
more, these methods cannot determine the
dimension of basis functions, but only pick the
order of the AR model. In this work, hence, a
new method combined by BIC and grey correla-
tion analysis (GCA) is developed to solve the
problem of model selection and to determine the
order and dimension concurrently.

The work focuses on the estimation of slowly
time-varying modal parameters of a thermo-

elastic structure with sparse natural frequencies,

such as beams and panels frequently used in
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hypersonic flight vehicles. Here the " slowly"
means that the time scale of the temperature vari-
ation is much larger than that of the thermo-elas-
tic structure vibration, and thermal-induced oscil-

lation do not occur.

2 Dynamic Equations of Thermo-

Elastic Beams

2.1 Simply-supported beam with axially movable

boundary

For simplicity, the thermo-elastic structure
in this paper is a simply-supported Euler-Bernoul-
li beam with a constant rectangular cross-section,
as shown in Fig. 1, subject to a distributed excita-
tion f(x,t) and a uniformly distributed tempera-
ture field T(x,t) = T(¢) . Let [ be the length of
beam, A the cross-section area of beam, and I the
cross-section moment of inertia of beam about the
axis y-y. The ordinary simply-supported beam
has two axially immovable boundaries, which
constrain the axial thermal expansion of the beam
and greatly reduce the critical buckling tempera-
ture of it. To remove this shortcoming, it is nat-
ural to let one boundary axially movable so that
the axial thermal expansion can be released. To
well model the real boundary in this case, it is
better to add an axial spring at the movable
boundary as shown in Fig. 1.
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Fig. 1 Simply-supported beam with an axially movable

boundary

As a result of thermal expansion, the axial
thermal force N, yields

Rl
EA + k.l

where k. is the stiffness coefficient of spring and

N, = E(T)AaCTH(T — T, (1)

minus sign means N, is an axially compressive

force. E(T) and «(T) are the Young's modulus

and the thermal expansion coefficient changing
with temperature T, respectively. T, is the ref-
erence temperature, i. e. , the room temperature.

Using Hamilton' s principle, it is straight-
forward to establish the dynamic equation of the
thermo-elastic beam as follows™

I w J

Zw
PAGE N TE B

Substituting Eq. (1) into Eq. (2) gives the

'w
4

P (2

transverse dynamic equation of the beam as fol-

lows
2w | RJAEAa(T — T,) *w (7’17,@_ .
‘OA r’ T EA + k1 Azt +E dz* =/

3)
2.2 Finite element formulation

Eq. (3) enables one to obtain the dynamic

equation modeled by FEM in the following matrix

form
Mw + (K; + K,)w=F, 4
NE NE
M = ZM?’ KT - ZK%'
e=1 e=1
NE NE
K,= > K., Fy = > F; (5

e=1 e=1

where the matrices of finite element are defined

by the integrals

1 !
M —[ N'pANde. Ki=| BTECT) Bdr.
0 0

tl L
Kj;:J G'N,.(D)Gdx, F;,:J /Ndx  (6)
0 0

with the curvature interpolation matrix and the
slope interpolation matrix as

B=[N', N, N, N.]

G= [N/1 N, N/, N/J

The coefficient matrix M‘ is the element

D)

mass matrix and K% is the time-varying element
stiffness matrix as a result of material perform-
ance degeneration due to heating. The coefficient
matrix K¢ is the time-varying element stiffness
matrix due to longitudinal load N, () with the
thermal effect. The load vector Fj represents the
equivalent nodal loads due to the external force
f . For simplicity, the proportional damping is
used in this paper. Now, the dynamic equation
with a temperature effect taken into account reads
Mw + [pM + y(K: +K,) Jw+ (K; + K, )w=F}

(€))
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3 Time-Varying Autoregressive Model

3.1 TVAR modeling and estimation

This subsection deals with a TVAR process

2 (1) of order p in discrete-time as follows**

4
e =—>la,Wx—D+er) (9

i=1
where e (1) is a stationary white noise process
with zero mean and variance ¢°, and the TVAR
coefficients {a,(¢), i=1,2,++, p} yield the follow-
ing linear combination of a set of basis functions

{g./(t)’ j:Oaly"'vm}

a; (D) =>azg,; (O (10)

j=0

where a;; are the weighted coefficients and m is
the dimension of the basis functions.
Let
AT = [alo’...,alm,...,apo,...’apm] (1D
X' =[xG—Dgo@ sy 2—1D g, (1),
(=P gDy 2t—p g, (D] (12)
Then Eq. (9) can be expressed as
() =—XIA +e(t) (13)
According to the principle of least square
(LS), the estimation of {a;} aims at minimizing
the total squared prediction error

? " 2
E=Y]am+ > Dajgatc—| an

i=1 j=0

Then, it is easy to get the LS estimate of {a; }

N = N N
A=—( D xx!) DXz A5
t=ptl t=ptl
and the LS estimate of residual variance
N

u 2
o=y 2 [0+ Dazt—i]’

t=ptl

(16)
Eq. (15) shows that the LS estimate requires
matrix inversion and may give rise to the prob-
lems of computational cost and storage space. In
practice, it is appropriate to use the recursive
least square (RLS) estimation based on the esti-
mation of previous steps.
A variety of forgetting methods has been
available so far to reduce the weight of the data in
a distant past and reduce the effective memory of

the RLS algorithm %%, In this paper, the expo-

nential forgetting method with a constant forget-
ting factor is used so that the parameter estima-
tion algorithm can be written as
Ay =Ay — P Xy Q+ XAPX ) e

(x (N+ 1)+ XA v)

1

Py = [Py = PuXyQ+ XIP X XLP]

an
where the forgetting factor A is chosen in the
interval (0, 1], and normally close to 1. The
initial value of A and P can be selected as A, =0,

P, =yl , where g =1 and I is the unit matrix.
3.2 Selection of order and dimension

The BIC of Akaike is the most popular meth-
od for selecting orders. As shown in Ref. [24],
the BIC can be expressed as

BIC(p) = Nlns* + CpInN (18)
where N is the number of the data samplings, ¢
the predicted error of the model and C a constant
larger than 1. When order p increases, the first-
item of the right hand of Eq. (18) decreases, but
the second item increases. The number p which
minimizes the BIC value is regarded as the appro-
priate order.

As mentioned above in Introduction, there
may be several local minima in FPE, AIC and
BIC values. It is therefore difficult to pick the
global minimum due to the fact that the FPE,
AIC and BIC functions are often not strictly con-
cave down, and sometimes are accompanied by
random fluctuations, in the actual process for se-
lecting orders. Furthermore, BIC can only pick
the order of the AR model, but cannot determine
the dimension of the basis functions. Hence, in
this study, BIC is used to preliminarily determine
the rough scope of order p. Then, order p and
dimension m are determined simultaneously by
using the theory of grey systems with the defini-
tion of absolute grey correlation degree (AGCD).
BIC thus reaches some minima so that the rough
scope of the order number can be obtained prelim-
inarily. After getting the scope of p, one can set

up the range of dimension m as [0, 8] for in-
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stance, and then build up the corresponding
TVAR models. By means of the original LS esti-
mator or RLS estimator, the AGCD between the
TVAR model and the original signal {x,} can be
acquired. The following steps give the definition
and detailed algorithm for computing AGCD.

Step 1 Normalize the sequences X =

(z(B) bk =1,,N} and X = (x(k) sk =1, N}

via their initial values. That is, let

- _ak) o,
Y—{y(k)—;(l),k—l,Z, ,N}
- B a9
Y f— N :x f— cee
Y—{y(k) T k=1.2, ,N}
Step 2 Compute the absolute difference

between the sequences and get the difference
quotient sequences

) _ Vi) — i ()
ALy

k=1,2,-,N—1}

Ay ={ Ay, (1,

’

ey — 5 (5 20
S (AL _Yillen) — yiE,
Ay —{ Ay,(tk) Al‘k ’

k:1,2,"',N—1}

Step 3  Compute the relation coefficient

r(¢;) and the AGCD GR( x,2)
1

) = = 21

T =T A — sy o] P
N—1

GR(z,2) = DAt (1) (22)
N—1Z

With the increase of p and m, the AGCD
increases and gets more and more close to 1. That
is, a more precise TVAR model can be estab-
lished when p and m become larger. From the
viewpoint of forecasting, however, it is not
appropriate to choose arbitrarily large p and m.
The mean squared error of the forecasts depends
not only on the white noise variance of the fitted
model, which will be smaller for a higher-order
model, but also on errors, which will be larger
for a higher-order model, arising from estimation
of the model parameters. Furthermore, the in-
creases of p and m may yield false modes and over
fitting, respectively, and result in large amount
of computations. Hence, the optimal order p and

dimension m should be determined by choosing an

appropriate value of AGCD, usually about 0. 9 for
the identification of modal parameters based on

ambient excitation test.

3.3 Determination of time-varying modal param-

eters

Consider the general case of a linear structure
of n, degrees of freedom, modeled by FEM, as
follows

Mg (1) +Cq (1) +Kq () = f(1) (23)
where M, K and C are the mass, stiffness, and
damping matrices of dimension (n; Xn,) , respec-
tively. q(z) and f(¢) are the vectors of dimension
(n, X 1) for generalized displacement and external
excitation, respectively. The parameter identifi-
cation of Eq. (23) leads, by the application of the

inverse Z-transform, to finding the parameters of

a linear ARMAQn,;,2n, — 1) model as
follows!'™

Az y(k) =Bz HDw(k) Q@D
with

Az D) =14az " taz?+ - +ta,z "
B(z ') =byz ' +byz 24 e+ ])Z,M Lt

(25)

For a time invariant structure, the coeffi-
cientsa,(i=1,2,++,2n,) and b, (i=1,2,+,2n, —
1) of the ARMA model are time-invariant. For a
time-varying structure, however, these coeffi-
cients are time-varying.

Base on the equivalence relation of AMAR
model and infinite-order AR model, the above
ARMA(2n,.2n, —1) model can be replaced by an
AR(o2) to avoid the nonlinear problem for sol-
ving the coefficients of MA model. In implemen-
tation, the coefficient estimation of an AR model
of enough finite-orders can approximate the true
coefficients of ARMA model. The coefficients of
AR part contain the characteristics of frequencies
and damping ratios of the system. As the AR
model is an all-pole model, the transfer function
at time instant 7 is

)
H(y9) =1+ >ja, (05 (D (26)

i=1

Thus, the instantaneous natural frequencies

and modal damping ratios can be derived from the
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conjugate roots s; (), s (¢) of the above transfer

function as follows

771 y . ‘.x
f,-(t)—zwm‘ Ins; () « Ins;/ (1) ,

InCs; (2) « s (1))
2/ Ins; (¢) « Ins; (1)

() =— @7

4 Numerical Simulations

This section starts with the dynamic analysis
of the beam model. The beam length, width and
thickness are taken as 1, 0. 01 and 0.0l m,
respectively. Furthermore, mass density, Young' s
modulus, Poisson’s ratio and coefficient of ther-
mal expansion of the beam material at the refer-
ence temperature are 2 700 kg/m*, 70 GPa, 0.3,
and 2. 3X10 °°C', respectively. Without loss of

generality, the reference temperature is assumed

to be 0 °C in this paper. Fig. 2 and Fig. 3 show

the variance of Young's modulus"?” and coeffi-
[28]

cient of thermal expansion'*™ versus temperature,

respectively.
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Fig. 2 Variation of Young's modulus vs. temperature
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Fig.3 Variation of coefficient of thermal expansion vs.
temperature
To discuss the advantage of the axially mova-
ble boundary for the simply-supported beam in
Section 2, the ordinary axially immovable bound-

ary must first and foremost be studied with a

small change that makes &, equivalent to infinite
in Eq. (1). For simplicity, let beam A and beam
B denote the simply-supported beams with two
immovable boundaries and with an axially mova-
ble boundary, respectively. At the reference tem-
perature, it is easy to obtain the first three natu-
ral frequencies of beam A, that is, 23. 1, 92. 4
and 207. 8 Hz, respectively. One can readily get
that the critical buckling temperature of beam A
is only 3.57 °C. Hence, beam A is easily to get
buckled in a very low temperature. For this rea-
son, attention in this paper is paid to beam B,
where a spring with elastic constant 30 kN/m is
attached to the axially movable end of the beam.
It is found that the critical buckling temperature
of beam B rises to 455. 7 °C. Hence, all the numeri-
cal simulations hereinafter are made for beam B.

To study the time-varying modal parameters
of beam B, the first three natural frequencies at
the reference temperature should be determined.
In case 1, the degeneration of material perform-
ance is taken into account. In case 2, only the
effect of thermal stress is considered. In case 3,
both effects of material performance degeneration
and thermal stress are taken into consideration.

Fig. 4 shows how the first three natural fre-
quencies of beam B change with the increase of
temperature in three cases. It indicates that the
natural frequencies of beam B decrease when tem-
perature increases, where both the degeneration
of material performance and the thermal stress
inevitably matter. Their effects will be addressed

in further discussion.

Red: Case 1
Green: Case 2
Blue: Case 3

Ist order
2nd order
3rd order

300

Fig. 4 Variation of natural frequencies vs. temperature

in three cases
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Now, the dynamic response of beam B under
a white noise excitation at the reference tempera-
ture can be computed by using the well-known
Newmark-Beta algorithm. The parameters in the
algorithm are set as y=0.5, 3=0. 25 and At =
0.001 s. Then, the random decrement technique
(RDT) is used to transfer the random response to
free decays of the system. After the free decays
are derived, the sparse time domain (STD) algo-
rithm can be used to estimate the natural frequen-
cies as shown in Table 1, where the modal pa-
rameters identified via RDT-STD method are
compared with those identified via TVAR meth-
od. In Table 1, the first and the second natural
frequencies identified via RDT-STD method and
TVAR method are both close to their true values,

and errors are within 0. 5% of all.

Table 1  Natural frequencies identified via RDT-STD and
TVAR at reference temperature
True value/ RDT-STD/ Error/ TVAR/ Error/
Order H, H, y H, %
1 23.09 23.16 0.3 23.08 0.04
2 92.35 92.37 0.02 92.34 0.01

Now, the study turns to the identification of
time-varying natural frequencies of beam B sub-
ject to an unsteady heating. Fig. 5 illustrates
three cases of unsteady temperature field of con-
cern, i.e., a linear increase, denoted as Temp 1;
a linear increase followed by a constant, denoted
as Temp 2; and a linear increase followed by a

linear decrease, denoted as Temp 3.

Temp 1
Temp 2
Temp 3

Fig. 5 Variation of temperature

To compute the dynamic response of the
beam subjected to the above heating, it is neces-
sary to interpolate the corresponding Young' s

modulus and the thermal expansion coefficient of

beam material according to the temperature at
each time instant. Then, based on the axial equi-
librium condition, it is straightforward to com-
pute the axial thermal stress. After the material
performance degradation and thermal stress are
considered, the unit mass matrix, unit damping
matrix, unit stiffness matrix and external force
vector can all be determined. Finally, by integra-
ting the unit matrixes into overall matrixes, the
dynamic responses can be computed by using the
Newmark-Beta algorithm.,

To discuss the order selection for TVAR
model, the case of Temp 1 is taken as an exam-
ple. The sampling number N is very large and
therefore the constant number C of BIC criterion
can be taken as 30. Fig. 6 shows the variation of
BIC value versus the order p in the case of Temp
1. When p is assigned in the interval [12, 40],
BIC values are small, but have fluctuations and
reach several local minima. In this case, it is not
possible to determine the minimal value. Hence,
the order p can be preliminarily set within
[12, 40], and then AGCD is used to determine
the order p and dimension m simultaneously.
Fig. 7 illustrates the variant of AGCD versus p
and mindicating that AGCD increases and gets
more and more close to 1 with the increase of p
and m. When dimension m is larger than 4,
AGCD barely changes with the increase of m for a
constant order p. Here, p and m can be taken as
(28, 4) or (27, 6) respectively, and accordingly
AGCD reaches a relatively large value, 0. 89. The
real order of time-invariant AR model after the
expansion of the time-varying parameters is p X

(m=+1), and Py in Eq. (17) is a matrix of order
_10 -
_11 -

1oL
w [\
>N

L
~
T

BIC value /10

|
[
W
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Fig. 6 Variation of BIC
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Fig. 7 Variation of AGCD vs. dimension m and order p

p X (m—+1). To decrease computation complex-
ity, the order and dimension are taken as 28 and
4, respectively.

For different cases of temperature variation,
different order p and dimension m can be deter-
mined simultaneously by combining BIC and
AGCD. After selecting a suitable forgetting fac-
tor, the TVAR model can be established, and
then the time-varying coefficients of TVAR mod-
el are derived via an RLS estimator. According to
Eq. (27), the instantaneous natural frequencies
can be obtained for the three cases of time-varying
temperature.

In order to have a quantitative discussion,
the mean absolute percentage error (MAPE) is

defined as

N
_ 1 \y,—y,
MAPE = NZ BT

X 100%  (28)

where y; and y; denote the true value produced by
the direct modal analysis and the identified value
at the ith time instant respectively. N is the total
number of samplings.

Fig. 8 shows the instantaneous natural fre-
quencies identified by the proposed method from
the noise-free response of the TVAR model for
three temperature variations. In Fig. 8, the iden-
tified instantaneous frequency is capable of track-
ing temperature variation during the whole time
duration.

Table 2 gives the MAPE of natural frequen-
cies in noise-free measurement, which shows that
the identified instantaneous natural frequencies

are close to their true values with high precision

—— |st order
—o— 2nd order

Black: Temp 1
Red: Temp 2

Blue: Temp 3

Fig. 8 Instantaneous natural frequencies

Table 2 MAPE for noise-free estimation

Temperature Natural frequency/ %
case 1st order 2nd order
Temp 1 1.68 0. 20
Temp 2 2.70 0.49
Temp 3 3.09 0.57

as the largest MAPE of them is smaller than 5%.
In practice, the measured data always con-
tain corrupted noise of certain level. To demon-
strate the robustness of the proposed method
against the measurement noise, the simulated re-
sponse data are assumed to be contaminated with
a Gaussian noise of zero mean. More specifically,
either 1% or 5% standard deviation of the noise-to-
signal ratio (NSR) is used, and NSR is defined as
NSR = sn/srs (29)
where sn is the standard deviation of the added
noise and srs is the standard deviation of the re-
sponse signal. In implementation, the numerical
response is computed first and then the corre-
sponding srs. Afterwards, sn is determined from
a given NSR. A standard Gaussian white noise
with a unit standard deviation is then generated,
multiplied with the value sn, and then added to
the response computed to produce the measured
response.

The comparison of the MAPEs listed in Ta-
bles 2, 3 and 4 shows that the processing of noisy
responses reveals different observations of influ-
ence on natural frequencies. With an increase of
NSR, all of MAPEs increase slightly for the nat-
ural frequencies identified in this paper. For ex-
ample, MAPE of the first natural frequency in
the case of Temp 1 changes from 1. 68 to 1. 70
and 1. 75 for the cases of noise-free, NSR=1%,
and NSR = 5%, respectively. Meanwhile, the
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variations of MAPEs of the identified natural fre-
quencies and their true values are small. Based on
the above discussion, one can safely draw an
assertion that the measurement noise does affect
the identification accuracy of natural frequencies
slightly.

Table 3 MAPE for noisy estimation (NSR=1%)

Temperature Natural frequency/ %
case 1st order 2nd order
Temp 1 1.70 0.21
Temp 2 2.71 0.52
Temp 3 3.12 0.61

Table 4 MAPE for noisy estimation (NSR=5%)

Temperature Natural frequency/ %
case 1st order 2nd order
Temp 1 1.75 0.25
Temp 2 2.83 0. 60
Temp 3 3.25 0.75

5 Conclusions

A systematic identification method is pro-
posed for the time-varying modal parameters of a
kind of thermo-elastic structure with sparse
natural frequencies under unsteady heating condi-
tions. The identification method is based on the
TVAR model with time-varying coefficients for
the structure to be identified from the input and
output of the structure. These time-varying coef-
ficients are expanded as a finite set of basis func-
tions. The order of TVAR model and the dimen-
sion of basis functions are simultaneously deter-
mined via AGCD after a preliminary selection of
order number from BIC. The identification meth-
od is applied to estimating the time-varying modal
parameters of a simply-supported beam with an
axially movable boundary subjected to different
kinds of time-varying heating. The numerical
simulations show that the identification method
can estimate the instantaneous natural frequencies
of the beam at each instant of heating process.
The identified results are capable of tracking slow
time-varying natural frequencies with high accu-
racy. The measurement noise usually causes

slight shifts of identified frequencies. In future

works, the method should be improved for identi-
fication of modal damping ratios with high accura-

cy, especially from noisy input and output data.
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