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Abstract: The primary resonance of a single-degree-of-freedom (SDOF) system subjected to a harmonic excitation

is mitigated by the method of optimal time-delay feedback control. The stable regions of the time delays and feed-

back gains are obtained from the stable conditions of eigenvalue equation. Attenuation ratio is applied for evaluating

the performance of the vibration control by taking a proportion of peak amplitude of primary resonance for the sus-

pension system with or without controllers. Taking the attenuation ratio as the objective function and the stable re-

gions of the time delays and feedback gains as constrains, the optimal feedback gains are determined by using mini-

mum optimal method. Finally, simulation examples are also presented.
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1 Introduction

In the past decade, a substantial amount of
research have been carried out to understand the
effects of time delay on the behavior of nonlinear
dynamical systems which are controlled by the
linear or nonlinear feedback controllers to miti-
gate the vibrations. The time delays exist not on-
ly between sampled signal output and control sig-
nal input, but also arise while the controller is
calculating or performing. The intrinsic time-
delays inevitably bring a defective effect on the
structural vibration control. However, most re-
searches paid attention to the defective impact
caused by time delay. Research is sparse on the
use of time delay for vibration attenuation con-
trol. The delayed terms of the nonlinear systems
have an important role in the vibration control en-

gineering. For this reason, understanding of the
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role played by delayed vibration control of the
nonlinear systems is essential.

Recently, local stability and bifurcations of
the nonlinear vibration system have received con-
siderable attention™?, Li et al® studied the
response of a Duffing-Van der Pol oscillator under
delayed feedback control. Ji and Leung™! studied
the primary, super-harmonic, and sub-harmonic
resonances of a harmonically excited nonlinear
single-degree-of-freedom (SDOF ) system with
two distinct time-delays in the linear state feed-
back. Qian and Tang™ discussed the primary
resonance and the sub-harmonic resonances of a
non-linear beam under moving load based on
time-delay feedback controllers. Daqaq et alt®
presented a comprehensive report on the effect of
feedback delays on the non-linear vibrations of a

Their

work also includes the analysis of the effect of

piezoelectric actuated cantilever beam.

Foundation items: Supported by the National Natural Science Foundation of China (51375228); the Aeronautical Science
Fund (2013155202) ; the Fundamental Research Funds for the Central Universities (NJ20140012); the Priorty Academic

Program Development of Jiangsu Higher Education Institutions.

» Corresponding author: Ji Hongli, Lecturer, E-mail: jihongli@nuaa. edu. cn.



50 Transactions of Nanjing University of Aeronautics and Astronautics

Vol. 31

feedback delays on a beam subjected to harmonic
based excitations.

In recent years, the technique of delayed
feedback control has been utilized as an effective
tool in controlling vibrations of a wide variety of
mechanical systems. Olgac et al'”? used the meth-
od of delayed resonators to control the vibration
of mechanical system. The time-delayed accelera-
tion feedback control was utilized to study the
vibration of a continuous system'. The time-
delayed velocity feedback control technique was
applied for controlling the vibration of torsional
mechanismst™. Jalili et al'' used time-delayed
feedback resonators to control the vibration of
discrete multi-degree-of-freedom systems. Naik
and Singrut'?! studied the stability, Hopf bifur-
cation and chaotic vibration of a nonlinear oscilla-
tor with multiple time-delays. Zhao et al'*' used
the delayed feedback control technique to sup-
press the vibration of vertical displacement in a
two-degree-of-freedom nonlinear system subjected
to external excitation. Active control is applied in
the vibration of the linear and nonlinear vibration

L415]  The authors mentioned above

structures
had reservations on the selection of feedback gains
and time-delays, which can enhance the control
performance of nonlinear system or change the
position of the bifurcation point. However, all
these publications missed to report method for
choosing the optimized control parameters and
time delays for keeping the system stable.

The main purpose of this paper is to present
an optimum control method for SDOF nonlinear
vibration system. This system takes the time de-
lay as a control factor that can turn the defective
effect into the favorable effect. This system also
chooses the optimized time delay used in the vi-
bration attenuation of an intelligent structure,
which can reduce the input energy and simultane-
ously improve the system control effect. A meth-
od of determining the regions of the time delays
and feedback gains is given based on the analysis
of the stability conditions of eigenvalue equation.
The control parameters are calculated by mini-

mum optimal method, which takes the attenua-

tion ratio as the objective function. Optimal con-
trollers are designed to control the dynamic

behavior of the nonlinear dynamic system.

2 Equation Derivation

The dimensionless equation of motion of a
non-linear SDOF system subjected to a harmonic
excitation with two distinct time-delays can be

written as follows™™

U+ ' u+ 2epu +equ’ =e2Fcos Qt +
ZSEgdu(Z*rl)Jrgvl:t(tffz)] (@D
where g4 and g, are the feedback gain parameters
of displacement and velocity, respectively.

In the case of primary resonance, the fre-

quency is expressed as
N=w+te (2)

By using the method of multiple scales, an
approximate solution to Eq. (1) can be written as

u(tse) =uo(To, T1) +eu  (To s T) + 2+ (3)
where T, =¢"t, n=0,1,2,¢--.

By substituting the Eq. (3) into Eq. (1) and
equating the coefficients of like powers of ¢, the
following are obtained

Diuy + w’u, =0 4)
Diuy +w'uy =—2DyDyuy — 2pDou, —
auy + 2FcosQt + 2gqu, (t — 1) +
2g.u0 (6 —13) (5)
where D,=9/9T,, n=0,1,2,-.
The solution to Eq. (1) is
1

wy =—ae TP + ¢ (6)

2
where cc stands for complex conjugates. By sub-
stituting the solution of Eq. (6) into Eq. (5), the

equation of the secular terms can be written as
. . 3a - ; ‘
—iwDa —waD\f— inwa — §aa3 + FelTi™®

gee 1 +iwg ae T =0 7

Let y=0¢T, — . By separating the real and
imaginary parts of Eq. (7), the amplitude a and
phase y of the response governed by the following
polar form of modulation equations can be

expressed as

Dla:—,ucaJrEsiny (8)
1)

aD\y=¢.a — v.a’ +Ecosy 9
w
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h _ 8d . o . _ 84
where p. = p+ =" sinwr, — g,coswr, s 0. =0+ =%
w w

3a
8w’

Setting D;a= D,y=0, the following can be

coswt + g, Sinwts » v, =

obtained

—,aeaJrESiny:O (10)
w

s.a — v.a’ +£c057:0 (1D
w

From Egs. (10,11), the frequency-response equa-
tion can be expressed as
[,uf + (6. —wv.a?) J*a’ = (E

w

)¢ (12>

The peak amplitude at primary resonance re-
sponse obtained from Eq. (12) can be written as
Amax = Az (13)
e
For the purpose of comparison, peak ampli-
tude of nonlinear primary oscillator without con-
trol will be considered.
The equation of motion of the nonlinear pri-
mary oscillator without control is
Ut w'ute(2uu +oau’) =Kcosr  (14)
The corresponding peak amplitude for the nonlin-
ear primary oscillator without control is
G = (15)
wpt
As it is difficult to find an analytical solution
for a nonlinear system, the performance of the vi-
bration controllers on the reduction of nonlinear
vibrations cannot be studied using a similar proce-
dure for discussing the ratio of response ampli-
tude for the linear system. Therefore, an attenu-
ation ratio is utilized to evaluate the performance
of the vibration control by using a proportion of
vibration peak of primary resonance with and
without control. The attenuation ratio can be
[16-17]

written as

R:ijax: 1 (16)

A max &4

14+«

Sinwr; — g,COSwrs

i
In this paper,y is assumed as positive. As

defined by Eq. (16), a small value of the attenua-
tion ratio R indicates a large reduction in the non-

linear vibrations of the primary system. A smal-

ler attenuation rate can be obtained by selecting
proper parameters for feedback gains and time de-

lays.

3 Design of Primary Resonance Vi-

bration Controllers

The stability of the solutions is determined
by the eigenvalues of the corresponding Jacobian
matrix of Egs. (8,9). The corresponding eigen-
values are the roots of the equation

A 2ud +pl A+ (6o —vea®) (6. — 3v.a®) =0
an

The sum of two eigenvalues is — 2y, , which
varies with feedback gains and time delays. If
#.>>0, the sum of two eigenvalues is negative,
which means that at least one of the two eigenval-
ues will have a negative real part. Based on the a-
bove analysis, the sufficient condition for ensu-
ring the system stability is™
f(e) =i+ (6. — v.a®) (6. — 3v.d®) > 0y >0

(18)
The value of f(g.) is positive when there is no
real solution to the equation f(s.)=0. By assum-
ing pl=vlan.=via', it gains
F/l

4 4
pew

a9y

2 2 4 — .2
Me > Veldmax — Ve

For simplicity, the time-delays are expressed
in the forms of z; = and 7, =¢+wr. The param-

eter p.becomes
#e:/,erﬂsinwz——gvcos(errgo) (20)
w

As the phase of velocity is ahead of displacement
by n/2, the phase difference ¢ can be assumed as

/2. Eq. (20) can be modified as
se —p+ (L4 g )sinar 2D
w

Substituting Eq. (20) into Eq. (19) and consider-
ing Eq. (21), the following expression is obtained
, F!

(4 gasiner)’ = vl = (22)
prew
The region of the stable vibration control parame-

ters can be obtained as

g = gusingr = |12 —u (23)

w
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When there are two real solutions to equation
f(6.)=0, the solutions are

or =2v.a* + (viat —pf)w (24)
As the image of f(s.) =0 is a parabola open up-
wards, the inequality f(s.) >0 is satisfied when
0.<o. and ¢. >0, .

roots of the equation f (g.) = 0, the following

By reducing or enlarging the

inequalities are obtained
— " <o (25)
Oe = 20 + (Vidna — p)" =06 (26)

Considering the formula of 5, and inequality

2 4
oe < (Ve max

given by Eq. (25), the stable vibration region is

obtained as

go = g2 COSwr = o

20.F’ + /I F — 0
2 2
M w

>0 27
Taking into account the relationship Eq. (26),
there is
ok — g’
Hww

/‘C>O (28)

Lo = g3 COSwT < —

4 Optimization of Parameters for

Controller Design

The regions of feedback parameters are
obtained based on the analysis of the stability
conditions of nonlinear vibration system. Howev-
er, the optimal control parameters of the system
are difficult to obtain. Taking the attenuation ra-
tio as the objective function, the optimal feedback
control parameters can be calculated by using an
optimization method. An optimal analysis is car-
ried out by considering the cases with no solution
or with two solutions for the critical equation.

Parametric optimization design for the case of

critical equation without a solution is

1

min R = . (29)
(84 4 g siner
1+
/l
Subjected to
3 2
g Sinwr — % Tp=0, pe >0

Parametric optimization design in the case of criti-

Vol. 31
cal equation with two solutions is
min R = . 1 (30)
(244 g,)sinar
14—
/l
Ny
s.t.  g.coswr — Zu.F” + Zje 5 (b +6=>=0

1 1
) I — ub
or g.;coswr + ¢ 7 2 ¢ +0<0, ,MC>O

5 Simulation Research

This paper reports a study on the nonlinear
vibration control for SDOF system. The parame-
ters selected are a=1, w=3.0 and ;=0.05.

Fig. 1 shows the variation of peak amplitude
amx With time delays for feedback gains. It can be
easily seen that a,.. varies significantly with
increasing time delay. For the value of fixed am-
plitude of excitation and feedback gains, the am-
plitudes of the vibration in the regions of 0—1. 2
and 2.2—3. 2 are smaller than those in the re-
gions of 1. 2—2. 2 and 3. 2—3. 5. For fixed time-
delays, with increasing feedback gains the peak
amplitude decreases. The properly selected values
of time-delays and feedback gains give a smaller

peak amplitude apay.

4.0

... g=0.005, g.=0.01
35F -- gd=0.01, gv=0.02
— g=0.015, g=0.03

3.0

2.5

amax

2.0

1.5

10 L L 1 1 L 1
00 05 1.0 15 20 25 3.0 35

Fig.1 Variation of a,., with time delay for

different feedback gains

Fig. 2 shows the variation of attenuation ratio
R with time-delays for different feedback gains.
As evident from the figure, for a fixed amplitude
value of excitation, a smaller value of the attenu-
ation ratio R signifies a larger reduction in the

nonlinear vibrations of the system. A properly
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Fig.2 Variation of R with time delay for different

feedback gains

selected value of time delays gives a larger posi-
tive value of p. and a smaller attenuation ratio of K.

Taking the attenuation ratio as the objective
function, the optimal feedback control parameters
can be determined by using the minimum optimal
method. In the formulation of inequality
Eq. (22), the value of g, should be positive for
obtaining improvement in control performance. A
larger value of g, results in a smaller attenuation
rate of R and a better control performance. It is
also found that g, is a function of excitation am-
plitude F. With increasing value of F the value of
control parameter should be increased for reduc-
ing the vibration. The effect of the excitation am-
plitude on the stable minimum control parameters
for three sets of time-delays is shown in Figs. 3,
4. The stable maximum feedback gain is shown in
Fig. 5. For area above the curve, the feedback
gains can lead to a stable control performance
while that below the curve is unstable. The stable
minimum or maximum feedback gain varies with
change of the time delays and amplitude of excita-
tion. In the region of time delay 0—=x/2w, a
larger value of time delay requires a smaller feed-
back gain to control the vibration of the system.
The smallest feedback gain g can be used to
reduce the vibration, therefore the optimal con-
trol time-delays can be obtained when 7= n/2w.
The time delay can be taken as a control factor to
improve the control performance as well as the
feedback gains. A good control performance can
be obtained by selecting optimal time delays.

Fig. 6 shows the graphs for primary resonance of

vibration system for three different sets of feed-
back gains. There is no jump or hysteresis phe-
nomenon when g, =0.025 or 0.035. This sug-
gests that saddle node bifurcation and jump phe-
nomenon can be eliminated by choosing stable
values of the feedback gains. Three solutions ex-
ist when g, =0.005. The bending of the frequen-
cy response curves is due to jump phenomenon.
Moreover, the peak amplitude of the primary res-

onance response at g, = 0.035 is the smallest

0.4
< T=n/6® Stable feedback
ol - ;Zggg gain region
s 02} -
01t RS
REPs—— Unstable feedback
= gain region

0.0 1 1 1 1 1 1 1 1
01 02 03 04 05 06 07 08 09 1.0
F

Fig. 3 Stable minimum control parameters g,

for three sets of time delays
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05F Unstable feedback
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F
Fig. 4 Stable minimum control parameters g
for three sets of time delays
0.0 =
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e T R ain region
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ss “1.5} S
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Fig. 5 Stable maximum control parameters g.;

for three sets of time delays
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Fig. 6 Frequency-response graphs for primary resonance

for three sets of feedback gains

among the three cases. The vibration controllers
can effectively suppress the amplitude oscillations
of the nonlinear oscillator. Hence, by choosing
optimal feedback gains and time delays of the con-
trollers, the primary resonance response of the
nonlinear oscillator can be reduced.

Fig. 7 shows the primary resonance graphs of
vibration system for three different sets of the
time delays. The parameters are g4 =20.2, g,=
0.06, and F=0.1. There is no jump or hystere-
sis phenomenon when r=x/6w or z=x/3w. The
saddle node bifurcation and jump phenomenon can
be eliminated by choosing certain numerical val-
ues of time delays. Three solutions exist in a
region of coexistence when t=0. The peak ampli-
tude of the primary resonance response at 7= x/
3w is the smallest among the three cases. The
time-delays chosen correctly can effectively sup-
press the amplitude oscillations of the nonlinear

oscillator.

- - =n/6®
— =n/30

14 =0

12 |
1.0
0.8
0.6

0.4

Fig. 7 Frequency-response graphs for primary resonance

for three sets of time delays

The amplitude of excitation F is 0. 1. It can
be determined that the product of feedback gain
g, is higher than 0.025 when the characteristic
equation has no solution. Assuming r==/6w the
optimal feedback gains can be calculated as g, >
0. 567 for the case of characteristic equation with
two solutions.

Fig. 8 gives the numerical result of the
control performance of the nonlinear vibration
system with delayed displacement and velocity
controllers. It is evident that the vibration ampli-
tude is mitigated. In the numerical calculation,
the control damping p. and tune coefficient ¢, are
approximate replacements to 4 and o, respective-
ly. The Runge-Kutta method is used to obtain the
numerical result for the vibration displacement.
The feedback gains of displacement and velocity
are g4 =0.5, g,=0.4, respectively. The damp-
ing of the system is y=0.1. Time delay is r==/
3w. The frequency of the excitation is 2=3. 1.

0.15F — Controlled
- - Uncontrolled

0.10

0.05

0.00

Displacement of vibration

-0.05

Time

Fig. 8 Control performance of nonlinear vibration system

with delayed displacement and velocity controllers

6 Conclusions

The regions of the time delays and feedback
gains are obtained by enlarging or reducing the in-
equalities of production of eigenvalue equation
roots. Taking the attenuation ratio as the objec-
tive function, the optimal control parameters of
feedback gains and time delays are determined
using the method of minimum optimal attenua-
tion ratio.

Time-delays feedback control is a single-
channel control strategy and its design is relative-
ly simple. Compared to damping force controller,

the delayed controller is controlled with two
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parameters (feedback gains parameter and time

delayed parameter) which can be independently

adjusted. Therefore, the scope of design and ad-

justment are much wider.

A delayed circuit is

used in the controller algorithm and it has simple

structure, low energy consumption and is easy to

implement,
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