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Dynamical Model Updating Based on Modal Tests
with Changed Structure
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Abstract: A new approach to modifying the stiffness and mass matrices of finite element models is presented to im-
prove the calculation precision. By measuring the mode frequencies and shapes of both of the original and the new
structures with changed stiffness and mass, the stiffness and mass matrices of the finite element model can be up-
dated through matrices calculation and solving algebra equations. Taking a multi-freedom model as an example,
the relation between the number of the modes and the correction precision of stiffness and mass matrix elements is
researched. The facility and precision of the method are totally confirmed especially when the modeling error is
known limited to a definite local range. The feasibility of the approach is proven by an effective engineering applica-
tion to the model updating of a wing piece used in flutter test.
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1 Introduction ter the structural sensitivities are found™ % . Oth-

er methods, categorized into the 'direct’ meth-

Finite element (FE) method is an important ods, are to update the whole stiffness and mass

analysis approach to modern structural dynamics, (3.4]

matrices provided by Berman, et al Howev-

hich is applied to the calculation of mode and re-
W pp b er, both of the methods are not good enough be-
sponse of various kinds of complicated structures. . .
) ) cause the modes recognized from a single modal

The highly accurate model is necessary for analy- L. .
_ } ) ) test are limited. In recent years, Cha and some

zing, but the error in modeling can seriously af- . .

experts suggested a special updating method by

which the FE model can be updated based on the

measurement of the original mode shapes of the

fect calculating accurateness. If the structure to
be analyzed has been produced, the model can be

valued and updated by comparing its analytical _
structure and the new mode shapes with added

[5-7]

modes of vibration with the results of a model

mass But in fact, solely adding mass to the

test. Before 1970s, techniques of FE modeling

and dynamical tests were developed independent- structure can hardly be achieved, because the

ly, and the results of tests were only subjectively mass block always has volume and inertia which

used in verification and validation of FEs. Then are ignored in the course of this updating process.

two categories of FE model updating based on
modal tests developed gradually. Some methods
are to update the selected parameters of the mod-
el, and some physical parameters of the structure
such as Young' s modulus, mass density and

thickness of shell can be selected and updated af-

Another factor affecting the accuracy of this up-
dating work is that the attachment stiffness is in-
evitable when masses are added.

In the paper a new approach to FE model up-
dating is proposed, which is based on the meas-

urement of the modes of the original and the new

Foundation items: Supported by the National High Technology Research and Development Program of China ("863" Pro-
gram) (2008 AA12A205 ); the Aeronautical Science Foundation of China (2012ZA52001).

» Corresponding author: Wang Ke, Associate Professor, E-mail: wangk@nuaa. edu. cn.



No. 1 Wang Ke, et al. Dynamical Model Updating Based on Modal Tests with--- 57

structural modes with changed stiffness and
mass. In the approach, the stiffness and mass
matrixes are updated in a single solution step. If
the location of modeling error or the inaccurate
elements have been known, the approach will be
very effective. The paper provides an example of
FE model updating of a chain of coupled oscilla-
tors with 30 degrees of freedom. The results
prove the facility and the precision of the ap-

proach.

2 Updating Arithmetics

The number of degrees of freedom of FE
model is much bigger than that of computer aided
test (CAT) model in practical engineering prob-
lems. But the degrees of freedom of the two mod-
els will be equal when the mode reduction sugges-
ted by Kammer or SEREP™ is applied. There-
fore the assumption is adopted that the freedoms
of the FE model and CAT model are uniform.

If the damping in the vibration system is not
taken into account, the linear dynamical FE equa-
tion is as follow

M,x +K,x=F (D
where M, is the analytical mass matrix, and K,
the analytical stiffness matrix. Both of matrixes
are of size N X N. The eigenvalue equations of
Eq. (D) is

M, ®, A, =K, D, (2)
where A, is the analytical eigenvalue matrix, and
@, the analytical eigenvector matrix.

The mode results of the test of the same vi-

bration system satisfy

M®A =Ko (3)
where A consisits of a diagonal matrix of size N, X
N. , whose elements are the testing eigenvalues
of the vibration system, N, is the number of test-
ed modes, and @ is the testing eigenvector matrix
of size N X N. . The mass matrix M and the stiff-
ness matrix Kin Eq. (3) have no relationship with
M, and K, in FE equation, and they are not unique
and cannot be used for model updating directly.

When the vibration system is changed, such
as fastening some mass blocks in some local
places or adding springs to connect two points of

the structure, the stiffness matrix and mass ma-

trix of the FE model will be changed. The new
stiffness and mass added are written as K, and
M..

When the number of freedom degrees and the
measurement freedoms are not changed, the ei-
genvalue matrix is written as A, of size N. X N.
and the eigenvector matrix as @, of size N X N, if
the number of modes measured also remains N. .

The tested mode satisfies

M+M,) DA, =K+K, @, 4)

Take the transpose of Eq. (3) and postmultiply

the resultant matrix equation by @, , then we get

O K@, =AD" MO, (5)

The right and left hand sides of Eq. (5) are ma-

trix of size N. X N, .
Premultiply Eq. (4) by @ , then we have

O K+K)®,=0"' M+M,) DA, (6)

Eq. (5) minus Eq. (6) equals
AD"MP, — d"MDP A, =DP"M,®.A, — DK, D,

P
Since the matrix M is unknown, let
P=o"Mo (8a)
And
Q=0'M®.A, — O'K, O, (8b)
Eq. (7) becomes
AP —PA, =0 €D

where Q is a matrix of size N, X N, . It can be ob-
tained directly if the frequencies and modes meas-
ured in the test are known.

Since A and A, are diagonal matrices, using
straightened algorithm, the (i,;) th element of
Eq. (9) satisfies

A —A,) Py =Q; QL))
where A, is the ith measured eigenvalue of the
original structure, A,; the jth measured eigenvalue
of the structure whose stiffness and mass have
been changed. Sincei,j =1,2,:,N., the num-
ber of equations is N. X N, .

Assuming A; does not equal A,; (it can be real-
ized by adjusting the amount of mass or stiffness
attached. ), the unknown elements of P can be
solved.

Assuming K and M can be expressed as

M=M, + M (11a)
and

K=K, + K (11b)
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Substituting Eq. (11a) into Eq. (8) yields (i ! )U,-,- s, (20)
@' oM®, =P — ®'M,®, =R (12) A Ay

Because @' and @, are both rectangular matrixes,
they have no inverses. 8M can not be obtained di-
rectly by Eq. (12).

However, @, @, , P, M, all have been
known, so Eq. (12) can be expanded, then &M

appears as an unknown vector dm as follows

Adm =r (13)
where
A=0" R @! (14a)
om={cM,, M, oM,y oM,
OMyy e My

My My, SMan )T (14b)

r={(R, Ry -+ R Ra
Ry, o Ryy *** Ry Ry o Rww )™ (140)

Matrix A (size N2 X N?) is the direct product.
Vector dm is of length N?. And vector r on the
right hand side is of length N? .

Therefore 6M; (i,j =1,2,++-,N) can be ob-
tained by Eq. (13).

For most physical systems, the number of
measured modes is less than that of degree of
freedom. Therefore N, << N, which means the
number of equations is less than the number of
unknowns. Eq. (13) becomes an underdetermined
problem, so it typically has infinite number of so-
lution, in which an exact vector dm will not be
found. Only the minimum Euclidean norm solu-
tion can be found when the vector dm satisfies

Min = [Adm — r|| (15)

The stiffness matrix can also be updated in
analogy method.

Premultiply Eq. (5) by A™' , we have

AT DO KP, ="M, (16)
Postmultiply Eq. (6) by A,' , we obtain
@ (K+K)DA'=0"M+M)®, (17)
Eq. (16) minus Eq. (17) yields
A ®O'K®, — @' KD A, =

O'K.®.A,' — MO, (18)

Define that
S=®'K.®.A,' —® M@, (19a)
U=0"Ko, (19b)

Because A and A, are both diagonal matrices,
using straightened algorithm and substituting
Egs. (19a,19b) into Eq. (18) , we have

Assuming A; does not equal A,; » the unknown
elements of U can be solved.
Substituting U and Eq. (11b) into Eq. (19),
we have
Q' K®, =U— 'K, D, =T @D
The right hand side of this equation is
known. Using direct product and straightened al-

gorithm, Eq. (21) becomes

ASk =t (22a)
where
ok ={6K. 0K, -+ O6Kxn 0Ku
0Ky +r 0Ky
0K 1 0K ne OK w1 T (22b)
t={T,, Ty - Tiv Ty Te - Ty
Tvi Ta T " (22¢)

Vector 8k is of length N?, and vector t is of
length N? . The 6k can be found by Eq. (21) or
Eq. (22a).

When the number of measured mode is N
(that is N.=N ), the coefficient matrix of the left
hand side of Eq. (22a) is full rank, and the unique
solution of 0K can be obtained. But for the same
reason as calculating SM , when N, < N , we can
only get the minimum FEuclidean norm solution
whose error is difficult to predict and control.

Fortunately, in the physical engineering
problem, not all of the elements of the mass and
stiffness matrices need to be updated. On the one
hand, the geometrical relationship between FEs
does not change, and the zero elements of these
matrixes should not be updated; on the other
hand, the local range where error may exist is of-
ten known and the position of element to be upda-
ted is definite. Hence the number of elements to
be updated is more less than 2N X N. Some-
times, dM and 6K can be obtained through follow-
ing steps.

Applying elementary transformation to both
sides of Egs. (13,22a) and moving the elements
that need to be updated to the upside, new
Eqgs. (23,24) are deduced with block matrix algo-
rithm, shown as

M
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oK
Then, we have
AOM =r (25)
A, 0K =5 (26)

Error control is the most important require-
ment in updating model. But in fact, it is very
difficult to compare the difference between the
two sets of matrices directly. In the example of
this paper, the mass and stiffness matrices of the
example have been known. Therefore if the stiff-
ness and mass matrixes are strengthened and
changed into " stiffness vector” and " mass vec-
tor” (Kyy and May ) » Qx » Qu can be used to calcu-
late the error of these vectors, shown as

_ [KivKr]°®
[KiKy | X [KivKay ]
_ (M My, |
[MiMy ] X [MAivM ay ]

1 . U
where My and Ky are the "accurate stiffness vector”

(27a)

Qx

Qu (27b)

and "accurate mass vectors’ which are straight-
ened from matrixes. The value of Qg or Qy equal
with 1 means the stiffness matrix or mass matrix
of the model is accurate. But on most occasions,
the accurate stiffness and mass matrices could not
be found at all.

A better method for valuing a FE model is to
compare experimental mode results from proto-
type structure with predicted results from the
corresponding FE model. The most commonly
used results are mode frequencies (wr) » because
their test precision is relatively higher than that of
mode shapes. The correlation extent of the calcula-
tion frequencies (ws) and (wr) can be defined as™

Aw= (w1 — wa) /wa (28)
In general, the smaller the value of Aw is, the
more accurate FE model will be. But it is difficult
to estimate the corresponding relation between
the two sets of modes when the closely spaced
frequencies exist,

The modal assurance criteria (MAC) is also
a widely used technique to compare numerical da-
ta with test results. MAC is often used to pair

mode shapes derived from analytical models ob-

tained experimentally”’. MAC between the ith
analytical mode (@u) and the j-th measured
mode (@) is defined as
. (o7 ]
MAC,; = ! 29)
" [ehen] Lofrer]
The value of MAC is between zero and 1.

The value of 1 means that the analytical mode
shape is as same as the measured one. MAC
forms a matrix. In order to use it conveniently,

we defines the variable Q as

v [ MAC,
20 {E\'IMAC,,I
Q= N (30)

If Q nearly equals 1, the FE model would be

accurate.

3 Example Analyses
3.1 Simple example

The method above can be illustrated with the
following example. It is a simple vibration system
of 30 degrees of freedom which is made of springs
and mass blocks. Its mass matrix is diagonal and
the stiffness matrix is symmetric and tri-diago-
nal. The system is showed in Fig. 1. M; equals
8.6 kg, M, equals 20 kg and M,, equals 1. 0 kg.
Each of the other masses equals 6 kg, and the
stiffness of each spring is 5 000 kN/m except K,
which equals 3 000 kN/m. In the process of FE
modeling, the mass and stiffness are 6 kg and
5 000 kN/m respectively.

The change of system is that 3 kg is added on
the 29th mass block and the movement of the
30th mass block is restricted. It means that the
added mass element M,;9.20, is 3 kg and the stiff-
ness element K;.30, is nearly infinite. The new
system is shown in Fig. 2. Assuming all the vi-
bration modes of the original and new systems
can be measured, very perfect results will be ob-
tained. In this simulating example, the measured
modes are substituted by the calculated FE re-
sults which have no errors. The element errors of
the updated FE model are listed in Table 1. It is
obvious that it does not need to compare the vi-
bration modes, since the updating results are per-

fect.
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K 1 K2 K3 KB K30

Fig.1 Original system of mass and spring

M N

K 1 KZ KJ K19 KJO

Fig.2 New system of mass and spring after changing

stiffness and mass

As we know, in fact, it is very difficult to
get all the modes by test. Therefore the updating
effects using incomplete modes must be evalua-
ted. To the above example, the effects are differ-
ent when the number of modes is different. After
calculation and analysis, the rule can be con-
firmed that the more the measured modes are got-
ten, the more accurate the updated model is.
Table 2 shows the relative error of FEs when the
model is updated based on different numbers of
test modes (frequency truncated). Table 3 shows
the relation between the accuracy of some calcu-
lated modes and the number of measured modes.
Table 4 gives the relation between the variables,
Qk»Qy» Q , and the number of measured modes.
It is obvious that both the updated elements and
the calculated modes become accurate as the in-
crease of the number of measured modes and the
truncated frequency. Especially, the frequencies
and shapes of calculated mode reach real results
faster. In this example, when the truncated fre-
quency is 45 Hz and the number of measured
modes is 11, the relative error of an element of
the mass matrix is 66 %, but the maximum error

of the first six modes is only 2. 4%. Another em-

pirical rule can be justified in the example is that
when the measured truncated frequency is low,
the accuracy of the updated elements and calculat-
ed modes would be fluctuant.

Just as what is stated above, the matrices of
FE model can be updated accurately by using less
measured modes if the locations of errors are
known in advance, which is to be illustrated by
the example shown in Figs. 1—2. And the upda-
ting effects are researched based on different
numbers of measured modes on the occasion of
ascertaining the locations of errors. Its results are
shown in Tables 5—7. Table 5 shows the relation
between the relative error of updated matrix ele-
ments and the number of test modes (truncated
frequency). Table 6 gives the relation between
the accuracy of some calculating frequencies and
Table 7 shows

the relation between the variables Qx » Qu » Q

the number of measured modes.

and the number of measured modes. From these
tables, it can be found that updated elements and
calculating modes are all accurate even if only

first two modes are measured.
3.2 Complicated example

Below is a more complicated example of wing
flutter test piece. There are 141 nodes and 222
FEs in the model, which is shown in Fig. 3. The
comparison of the testing and calculating frequen-
cies is given in Table 8.

The structure is changed by adding mass at
the different point of the wing tip respectively.
Firstly, a 0. 2 kg steel block is fixed at the leading
edge. Then., a 0.4 kg steel block is fixed at trai-

Table 1 Elements of stiffness and mass matrices updated by complete modes
Value M;; / kg M5 / kg M. /kg K., /(Nem™) K;; /(Nem™) K,; /(N+m™")
No updating value 6.0 6.0 6.0 1X10° 1X10° —5X10°
Exact value 8.6 25.0 3.5 8§X10° 8X10° —3X10°
Updated value 8.6 25.0 3.5 8X10° 8X10° —3X10°
Table 2 Relation between error of elements and number of tested modes (truncated frequency)
Truncated frequency/Hz Relative error /%
// Number of modes M; M .15 Msq.20 K;.. Ks.s K;.;
No updating 30,232 6 76.000 0 71.428 6 25.000 0 25.000 0 66. 666 7
25//6 27.341 0 68.276 1 70.654 9 24.917 6 24,815 4 66.995 9
45//11 24.770 4 51.075 6 65.538 5 23.129 7 24.499 9 64.450 5
65//16 11.785 3 26.2315 59.938 8 19. 825 6 14.566 0 48.417 1
80//21 4.070 3 8.804 3 54.945 6 2.172 0 4.820 0 9.433 9
98//26 0.253 8 0.857 4 50. 842 3 0.000 O 0.000 0 0.000 O
100//29 0.000 O 0.000 1 32.469 3 0.000 O 0.000 0 0.000 O
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Table 3  Relation between errors of 1st—6th frequencies and number of tested modes

Truncated Relative error/ %
frequency/Hz st 2nd 3rd 4th 5th 6th
// Number of modes frequency frequency frequency frequency frequency frequency
No updating 5.440 0 9.895 5 2.316 5 9.861 8 1.882 6 9.168 9
25//6 1.104 4 1.339 4 1.254 7 0. 868 5 0.347 1 2.923 0
45//11 2.376 6 1.782 5 0.2515 0.776 8 0.026 1 1.567 7
65//16 0.734 0 0.088 5 0.395 3 0.383 0 0.091 2 0.312 4
80//21 0.075 3 0.072 1 0.076 6 0.032 2 0.020 9 0.146 7
88//26 0.004 5 0.001 5 0.002 8 0.009 0 0.000 3 0.0111
100//29 0.000 O 0. 000 0 0. 000 O 0. 000 0 0. 000 0 0.000 O

Table 4 Relation between parameters ( Qg ,» Qy » Q) and number of tested modes

Truncated frequency/Hz// Number of modes Qx Qu Q

No updating 0.996 4 0.7850 0.500 2

25//6 0.996 4 0.803 0 0.514 5

45//11 0.996 6 0.850 2 0.559 4

65//16 0.997 5 0.921 4 0.677 8

80//21 0.999 5 0.971 8 0.831 4

88,/ 26 1. 000 0 0.994 9 0.917 8

100//29 1. 000 0 0.998 3 0.931 2

Table 5 Relation between errors of elements and number of tested modes
Truncated Relative error/ %
frequency/Hz
// Number of modes M;.; LZIERE Meo.20 Ko K. K.

No updating 30.232 6 76.000 0 71.428 6 25.000 0 25.000 0 66.666 7
5//1 20. 861 4 44,190 3 30. 806 3 24.095 0 21.996 8 71.079 2
8//2 0.000 0 0.000 O 0. 000 0 0. 000 O 0.000 0 0.000 0
25//6 0.000 0 0.000 0 0.000 0 0.000 0 0.000 0 0.000 0

Table 6 Relation between errors of 1st—6th frequencies and number of tested modes

Truncated Relative error/ %
frequency/Hz Ist 2nd 3rd 4th 5th 6th
// Number of modes frequency frequency frequency frequency frequency frequency
No updating 5.440 0 9.8955 2.316 5 9.861 8 1.882 6 9.168 9
5//1 3.056 7 3.026 2 4,240 6 0.627 1 0.216 2 1.046 0
8//2 0.000 0 0.000 O 0. 000 0 0.000 O 0. 000 0 0.000 0
25//6 0.000 0 0.000 0 0.000 0 0.000 0 0.000 0 0.000 0

Table 7 Relation between parameters ( Qx » Qy - Q) and

number of tested modes

Truncated frequency/Hz

// Number of modes QA Qu Q
No updating 0.996 4 0.785 0 0.500 2
5//1 0.996 5 0.856 6 0.417 9
8//2 1.000 0 1.000 0 0.969 9
25//6 1.000 0 1.000 0 0.969 9
ling edge. The first four modes of two structures are Fig. 3 FE model of wing flutter model
measured and can be used in model updating. In the The comparison of the testing and calculating fre-
process of updating, the freedoms Ux, Uz, Ry of quencies after updating is also given in Table 8.

the models are reduced. And the freedoms of re- MAC is shown in Fig. 4. Variable Q is 0. 838.

duced model are coinciding with testing system. Therefore the updating precision is satisfactory.
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Fig.4 Histogram of MAC

Table 8 Comparison of testing and calculating frequencies

Mode No. 1 2 3 4
Testing frequency/Hz 3.50 10.00 15.30 20.50

Calculating frequency be-
. 3.38 9.73 15.24 20.10
fore updating/Hz

Relative error before up-

dating/ %

Calculating frequency af-

3.40 2.70 0.40 2.00

3.47 10.05 15.28 20.51
ter updating/Hz

Relative error after upda-

. 0.86 0.50 0.13 0.05
ting/ %%

4 Conclusions

The paper presents a new approach used to
update the matrices of mass and stiffness. The
precondition of updating is that the vibration
modes of the new system are measured, whose
structural stiffness and mass have been changed.
The wholly process is easy to be put into practice.

On the basis of theoretical analysis and two
examples, the results of the updating method are
presented as follows.

(1) When the degrees of FE model coincide
with those of modal test, and if the complete mo-
dal sets of both the original and the new systems
(stiffness and mass are changed) are measured,
all of the elements of the stiffness and mass ma-
trices can be updated accurately.

(2) If only some measured modes can be ob-
tained, the amended matrices SM and 0K are mini-
mal Euclidean norm solutions. The updated stiff-
ness and mass matrices are close to accurate solu-
tions when the number of measured modes is in-

creased.

But even if SM and 8K are not accurate, the
precision of the calculating modes can be satisfied.
That is to say, the updating method is also effec-
tive and useful when the complete modal sets can
not be obtained.

(3)If the modeling error can be localized to
some positions, the needed number of measured
modes will be decreased effectively. Correspond-
ingly, the practicability of this updating method
will be increased.

It is acknowledgeable that if a structure mod-
el is complicated and the errors are big, using the
updating method will be difficult especially when
the measured modes are less, which needs to be

further researched.
References:

[1] Friswell M I, Inman D J, Pilkey D F. Direct upda-
ting of damping and stiffness matrices [J]. AIAA
Journal, 1998, 36(3):491-493.

[2] Kuo Yuen-Cheng. Lin Wen-Wei, Xu Shufang. New
methods for finite element model updating problems
[J]. AIAA Journal, 2006, 44(6):1310-1316.

[3] Berman A. Mass matrix correction using an incom-
plete set of measured modes [ J]. AIAA Journal,
1979, 17(10):1147-1148.

[4] Chen ] C, Kuo C P, Garba J A. Direct structure pa-
rameter identification of modal test results [C]//24th
AIAA/ASME/ASCE/AHS Structure Dynamics and
Material Conference. USA:AIAA, 1983: 44-49.

[5] Cha P D, de Pillis L G. Model updating by adding
known masses [ ]J]. International Journal for Numeri-
cal Method in Engineering, 2001,50(11) :2547-2571.

[6] Cha P D, GuW. Model updating using an incomplete
set of experimental modes [J]. Journal of Sound &
Vibration, 2000, 233(4): 587-600.

[7] Wang Ke. Dynamics model updating based on repeat-
ed modal testes with added known masses [J]. Jour-
nal of Nanjing University of Aeronautics & Astronau-
tics, 2010, 42(2):153-158. (in Chinese)

[8] Mu Quanchen, Wang Cong, Zheng Gangtie, et al.
Correlation evaluation of tested and calculated modes
of a rocket equipment cabin [ J]. Journal of Mechani-
cal Strength, 2001,23(1):85-87.

[9] Zhang Anping, Wang Ke. Fuzzy evaluation of dy-
namics finite element model [J]. Journal of Nanjing
University of Aeronautics & Astronautics, 2006, 38
(3): 367-372. (in Chinese)

(Executive editor; Zhang Huangqun)



No. 1

Wang Ke, et al. Dynamical Model Updating Based on Modal Tests with---

63




