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Abstract: The dynamical and physical behavior of a complex system can be more accurately described by using the
fractional model. With the successful use of fractional calculus in many areas of science and engineering, it is nec-
essary to extend the classical theories and methods of analytical mechanics to the fractional dynamic system. Birk-
hoffian mechanics is a natural generalization of Hamiltonian mechanics, and its core is the Pfaff-Birkhoff principle
and Birkhoff's equations. The study on the Birkhoffian mechanics is an important developmental direction of mod-
ern analytical mechanics. Here, the fractional Pfaff-Birkhoff variational problem is presented and studied. The
definitions of fractional derivatives, the formulae for integration by parts and some other preliminaries are firstly
given. Secondly, the fractional Pfaff-Birkhoff principle and the fractional Birkhoff's equations in terms of Riesz-
Riemann-Liouville fractional derivatives and Riesz-Caputo fractional derivatives are presented respectively. Finally,
an example is given to illustrate the application of the results.

Key words: fractional derivative; fractional Pfaff-Birkhoff principle; fractional Birkhoff's equation; transversality

Vol. 31 No. 1

condition

CLC number: 0316 Document code: A

1 Introduction

Fractional calculus first appearing in the let-
ter that L'Hospital wrote to Leibniz asking about
the nth-derivative of a function in 1695, If n=
1/2, what would the result be. Although the bas-
ic mathematical ideas were explored long ago by
the mathematicians Euler, Laplace and Fourier,
the development of the fractional calculus is so
slow that it was not until 1974 that the first book
on this topic was published™,

Recent decades have seen the wide applica-
tion of factional calculus in many fields such as
physics, chemistry, biology. electronics, eco-
nomics, and control systems™®. In 1996 and
1997, Riewe"™ published the papers about his
work on fractional variational problems, in which

the fractional calculus is applied to a nonconserva-
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tive mechanical system. Since then, the fractional
variational problems have been studied by many
researchers. Agrawal investigated the simplest

fractional variational problem and the lLagrange

[6-9] [10-13]

fractional variational problem Baleanu
did some researches on fractional variational
problems for Lagrangian system and Hamiltonin
system. The fractional Noether theory was stud-

1181 Considering

ied by Frederico and Torres
that the integration’'s lower bound of the func-
tional is different from the fractional derivative's
lower bound of the Lagrangian, Atanackoviét!’*"
studied a new fractional Lagrange variational
problem. The fractional action-like variational
presented by El-Nabulsit??,

Though a series of work had been done, they did

problem was

not include the Birkhoffian system but just the
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Lagrangian system and the Hamiltonian system.
The fractional Birkhoffian system therefore
is studied in this paper. The fractional Pfaff-
Birkhoff variational problem is presented in terms
of Riesz derivatives. Using the formula for frac-
tional integration by parts and the commutative
relations between differential operation and varia-

the fractional Pfaff-Birkhoff

principle and the fractional Birkhoff s equations

tional operation,

are obtained in terms of Riesz-Riemann-Liouville
fractional derivatives and Riesz-Caputo fractional

derivatives respectively.

2 Preliminaries

In this section some basic necessary facts are
presented on the fractional calculus. More details
on the subject and its applications can be found in
Refs. [2-3].

The left Riemann-Liouville fractional deriva-

tive is defined as

dr

D=t ()] L

Fon—aoy \dt) Ji ¢—o)

(D
and the right Riemann-Liouville fractional deriva-
tive is

Dt f ()= -9

;<

'(m—a) de ¢ (e—p) !
(2)

where I'( * ) is the Gamma function and a the or-

der of the fractional derivative, which satisfies

m—1<a<lim.

The left Caputo fractional derivative is de-

fined as
) 1 t ]l'(m) (T)
o D = J d
! @ 'm—a)d:, (t— 1) w1 O
m—1<a<m (3)
and the right Caputo fractional derivative is
) ( 1) m JY} f‘(m) (T)
(D = =
Zf(t) I im—a)l: (t—)cm!
m—1<a<m 4

If o is an integer, these derivatives are de-

fined in the usual sense, i. e.

11D7f<t)=,ﬁD7f<t>=(%)af(t) (5)

,D‘sz(t):,chzf(t):(*%)af(t) (6)

The Riesz-Riemann-Liouville fractional de-

rivative is defined as

R Ty« 1
51 D’z f(t) T om —a)

dy"(= [

(E> Jﬁ ﬁr“””ﬂdf m—1<a<<m(7)

and the Riesz-Caputo fractional derivative can be

written as

RC a :; .
o Di, S @ 2I'm — a)

t, m)

J‘%dr m—1l<<a<<m (8
- T

If ¢ is an integer, then
s Ds () :ﬁcD?Zf(t):<%>af(t) (9)

The relationship between Riesz-Riemann-

Liouville fractional derivative and Riemann-

Liouville fractional derivative is

D f (D=L, Dif O+ (— DD ()]

(10)
and the relationship between Riesz-Caputo frac-
tional derivative and Caputo fractional derivative
is

2D f)y =~ [, Dif )+ (— D) "iDs, f(@) ]

(1D
The formulae for fractional integration by

parts in terms of Riemann-Liouville derivative

m—k—1 ko
E(il)kd S d'g @ a2

dlm k—1 dtk

and

sz(t) (D, g @) dt:ng(t) G Dif () de—

m—1

d’“*k @ dg @
2( =Ry

The formulae for fractional integration by

(13

a

parts in terms of Riesz derivatives can be deduced
as follows.
Using the relationship between Riesz-
Riemann-Liouville fractional derivative and Rie-
derivative, i. e.,

mann-Liouville fractional

Eq. (10), it has
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J gL Dif (0 +

ng(wfﬁD?zf(t)dt %

(—DDi, f() Jdt=

L s Dir it L1

ng(m Di, f () de (14)
Substituting Eqgs. (12,13) into Eq. (14) obtains
| g pw di=

—D ”’J f@ 8D g de+

m—1

1 d/u/l t d}\ [
LSy de |
k=0

m—1

" m*/ 1 [) d/ (f)
72( l)H me?(l g’
k=0

Eq. (15) is the formula for fractional integration

(15)

t
1

by parts in terms of Riesz-Riemann-Liouville
derivative.
The formula for fractional integration by

parts in terms of Riesz-Caputo derivative is'"

Jizgm KDy () di —

— 1) "'szmijfzg(t) de +

m=l Jr -t

DI (= DD g @) Qo () (16)

k=1 4
The commutative relations between differen-

tial operation and variational operation in terms of

Riemann-Liouville fractional derivative are**
6\11 Dj’F(t,azt):[1 D«SF (t,x) a7
5,D',32F(t,x):,D',@26F (tyx) (18)

where F(¢,x) is an arbitrary function, x=x(1t) is
the variable which is the function of time z. And
similarly we can easily prove the commutative re-
lations between differential operation and varia-
tional operation in terms of Caputo fractional de-
rivative, 1. e.
B,L]DF(t,r) LD‘*&F(z‘,zﬁ) 19
8D F(tyx) =;D{ oF (¢,x) (20)
Since the Riesz fractional derivatives are the
linear combination of Riemann-Liouvilles or Ca-
puto fractional derivatives, the following relation-
ships are obtained

o8 D F(t,2) =1 Ds oF (t,2) 2D

oKDy F (tsx) =5 D5 OF (11) (22)

3 Fractional Pfaff-Birkhoff Princi-
ple and Birkhoff’ s Equations in
Terms of Riesz-Riemann-Liouville

Derivative

Consider a Birkhoffian system** which is de-
scribed by 2n Birkhoff' s variables a*(v=1,

2n). Suppose the Birkhoffian of the system is
B=B (t.a), and Birkhoff's functions are R, =

R, (t,a). The integral

2n

J {ZR (tsa) 8 Dia> — B(t,a) ) dt

(23)
is called the fractional Pfaff-Birkhoff action in
terms of Riesz-Riemann-Liouville derivative.
Then the isochronous variational principle

0A =0 Q24
with the commutative relations
8Dt @ =EDidat v=1.w.2n (25
and the fixed endpoint conditions
oa’ | ,—, e, =0 v=1,12n (26)

can be called the fractional Pfaff-Birkhoff princi-

ple in terms of Riesz-Riemann-Liouville deriva-
tives.

The fractional Birkhoff' s equations can be
deduced from the fractional Pfaff-Birkhoff princi-
ple. Expanding the principle Eq. (24), it has

2n

5‘Afaj {ZR (tsa) Dy a> — B(t,a) ) dt =

4

2n

JTZS{ERU(z,a) £ Di @ — B(t,a) } dt =
4 v=1

2n

J {Z (R, D > + Ro¥ Dija*) — 6B} dit =

t
1

2n 2n

Jlr_) {Z(E (/)R,,aaﬁtk Da a’ JFRV(?FID??C{»)*
1 -
9B
25 g0 }dt—O (27)
that is
L[S (PR e ) 2B
6A 7Jr| {,2 =1 <aa” IR]D’) ) (,761"‘)66{# +
i(R S¥ D a) ) de=0 (28)
v=1

Using the commutative relations Egs. (25)
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and the formula for integration by parts Eq. (15),

the equation would be

J R6% Dt adt :J R, D darde =
4 : 4 :

—D J daf Di, R, dt +

1% d" 180 d'R, |
?Z 1>'T i

t
1

m—1

] " dm k IR d}gaav
52 DM T S
k=0

Substitutmg Eq. (29) into Eq. (28), we have

ty

29

t
1

2n 2n

_ 2] (’)Rb R A
“ _le {21@: (aaﬂ o Da )
d
75 —+ (— )’7'5|DL;2R#>6a/ldt+
o m—1
1 d" s d'R, |®
> 1y = 9% v B
2 ; FZ;( ) d[m k=1 d[k |
20 m—1
1 1 dlni,"il R d/caa vty
— _1 m & ANy _
2 ; £ ( ) At d . 0(30)
Let
IS gy d R
v=1 k=0 dem st det |,
i 2n m— o m k— IR dkaa" 0 f
2 ; 2 l‘”’*/ 1 dl‘ i} *0(31)

Eq. (31) is called the transversality condition in
terms of Riesz-Riemann-Liouville fractional deriv-
ative. Under the condition Eq. (31), Eq. (30)

becomes
2n 2n

=] DS G o) -

a=1 =1

aB

> 1)’”}{1DTZR,1>6af‘}dt:O (32)

According to the arbitrariness of the integral

tained.

interval [, ,¢, |, the following equation can be ob-
2n 2n
333 (5
P v=1 aa/l B

D’fza”> —
a=1

aB+(—l>”’RD“ ,)&zﬂ:o (33)

da”

The principle Eq. (33) is called the fractional
Pfaff-Birkhoff-d" Alembert principle in terms of
Riesz-Riemann-Liouville fractional derivative. It
is a differential variational principle. Because of

the independence of da”, one obtains

c V)_aB

2n
Z IR, D a
4 da” 4

+ (=D "EDyR, =0

p=1..2n (34)

Eqgs. (34) are the fractional Birkhoff's equa-

tions satisfying the transversality condition
Eq. (31) in terms of Riesz-Riemann-Liouville
fractional derivative.

Using the relationship between the Riesz-
Riemann-Liouville fractional derivative and the
Riemann-Liouville fractional derivative, Eqs. (34)

can be rewritten as
2n

> L D+ rDred ) -
=1

da”

aB

" (— 1) %01 DiR, + (— 1) /D5 R,)=0

pn=1,".2n (35)
When a—>1, Egs. (35) become

Z(‘;R/ @ — i)

(g g oo pmrn

Namely,

p=1,,2n (36)
Eqs. (36) are the traditional Birkhoff's equations.

The transversality condition Eq. (31) gives

2n 2n

1 y 2ok, +1 ZRaa =0 3D
i e.
2n
Zaa S =0 (38)
Using the fixed cndpoint conditions

Eq. (26), condition Eq. (38) is satisfied. Hence
the traditional Birkhoff's

special cases of the fractional Birkhoff's equations

equations Eqgs. (36) are

Egs. (34) in terms of Riesz-Riemann-Liouville

derivative.

4 Fractional Pfaff-Birkhoff Princi-
ple and Birkhoff’s Equations in

Terms of Riesz-Caputo Derivative

The integral

2n

A:J {>IR, (t:a) ¥°Di > — B(t,a) | dt

1
v=

(39)
is called the fractional Pfaff-Birkhoff action in

terms of Riesz-Caputo derivative. Then the isoch-
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ronous variational principle
0A =0 40)
with the commutative relations
81 Dia” =1D5 g’ v=1,,2n 41D
and the fixed endpoint conditions
da* |, =éba’|,—, =0 v=1,.2n (42)

can be called the fractional Pfaff-Birkhoff princi-

ple in terms of Riesz-Caputo derivatives.

Expanding the principle Eq. (40), it obtains

2n

0A = 5J {ZR (tsa) X°Ds @ — B(tsa) ) dt =

2n

j ZRv(t,a),'{lCD‘,’za”—B(t,a) bde=
=1
J E(aR KD: @ 4+ RSN D ar) — 6B | dt =

J {i(i«?RamDaa+RamDa «)—

2n

> jﬁ5a’“}dt20 (43)
w=1°¢
1. €
2 o o ORV L IB
SA:L{; ~ (aaﬂ Fl( z9a)—(a )Sa/Jr
2n
DIRS Dy @ ) dt =0 44

Using the commutative relations Eqgs. (41)
and the formula for integration by parts Eq. (16),

one gets

|"Ro D ade =] "R KD g0 de =
4 : 4 )

— 1 J 8a*% D R,de +

1
m dm 1— kaa» t,

FR atk—m
§< DD R,

Substituting Eq. (45) into Eq. (44), we have

=[S (G o) -3+

hly=1%v=

45

4

2n m—1

(— D "EDLR, Joar jdi+ ) ] (— D

v=1 k=0

e dmfl*/eé\a vl
:{1 D,:k R”W z =0 (46)
1
Let
2n  m—l1 m—1—k v |ty
22( )LI\DaLmR ddm 16(; =0 (47)
v=1 k=0 t

1

Eq. (47) is the transversality condition in terms
of Riesz-Caputo fractional derivative. From the

condition Eq. (47), Eq. (46) becomes

SHESE T

a=1 =1
(— 1) "E Dy R, )dar | de =0 (48)
According to the arbitrariness of the integral

interval [¢,, t, ] » one obtains

2n 2n

IR, e, .\ OB
;(;(WSD%“)*MNL
(— 1) "E D4R, )dar =0 (49)

The principle Eq. (49) is called the fractional
Pfaff-Birkhoff-d" Alembert principle in terms of
Riesz-Caputo fractional derivative. Because of the

independence of da”, it obtains

> (& wa)— 28 4
v=1

1)"¥ Dy R, =0

da”
p=1,,2n (50
Egs. (50) are the fractional Birkhoff's equa-
tions satisfying the transversality condition
Eq. (47) in terms of Riesz-Caputo fractional de-
rivative,
Using the relationships between Riesz frac-
tional derivative, Riemann-Liouville fractional de-
derivative,

Caputo  fractional

Egs. (50) become

2(3R S EDra + (= 1"y a) )~

—/ \da"
8

B —nrl

da’

rivative  and

DiR, + (— 1) /D% R,) =0

pn=1,.2n (51)

When a1, Egs. (51) can be written as

i}(aR”iw—(—w)))—aB—
=1

da" 2 da*
I
Namely,
2n
23 (5~ 5 )i = (e + %) =
pn=1,.2n (52)

Egs. (52) are the traditional Birkhoff's equations.
The transversality condition Eq. (47) gives

2
2n :

R 2
> Di'Réa’| =0 (53)
v=1 1! B 4
Using the fixed endpoint conditions

Eqgs. (42), condition Eq. (53) can be satisfied.
Birkhoff" s

Hence the traditional equations
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Eqs. (52) are special cases of the fractional Birk-
hoff’s equations Egs. (50) in terms of Riesz-Ca-

puto derivative,

S Illustrative Example

In order to illustrate the above results, a
Birkhoffian system is studied whose Birkhoffian

and Birkhoff's functions are
B:%[(al)%(a’*)z—l—(a’l)zj (54)

R, =d*, R,=da', R,=R, =0 (55)
Authors try to establish the fractional Birkhoff's
equations in terms of Riesz-Riemann-Liouville
fractional derivative and Riesz-Caputo fractional
derivative.
Without loss of generality, it is supposed
that 0<Cq<C1. The fractional Pfaff-Birkhoff action
in terms of Riesz-Riemann-Liouville derivative

Eq. (23) gives

iy ; .
AZJ {a'iED‘,’_)a'Jra1iD7,)aZ*
) 2 2

1

%[(al)z+(a3)2+(a4)2] dt (56)

The fractional Pfaff-Birkhoff-d" Alembert princi-
ple in terms of Riesz-Riemann-Liouville fractional
derivative Eq. (33) gives
(—a' =i Dia’)éa’ + (§Dia') da’ +
,RID‘,*Zal —a’)da’ + (ﬁ DfZaZ —a')da' =0
(57
According to the independence of da’
(v=1,2,3,4), the fractional Birkhoff's equations
Eqs. (34) corresponding to the action Eq. (56) are
obtained as follows
—a' —Dja’ =0, [Dja'=0
,RID‘,‘Zal—aSZO,f{]DZaQ—cf:O (58)
and the transversality condition Eq. (38) gives
(a®da’) fj + (a'da?) ﬁ; =0 (59)

The fractional Pfaff-Birkhoff action in terms

of Riesz-Caputo derivative Eq. (39) gives

iy 0 b b
A :j {ad FILDZ(JI + a4 FI('D??CIZ _
. 2 2

%w)w @)+ @1l de 60

The fractional Pfaff-Birkhoff-d" Alembert princi-
ple in terms of Riesz-Caputo fractional derivative
Eq. (49) gives

(—a' =8 Dia’)éa’ + (2 D a')da’ +
,Rl("D‘fzal —a*) oa’ + (f‘l(‘D‘,’zaZ —a')da' =0 (61)
Egs. (50) yield
—a' *,Rl sza3 =0, ,RID‘,‘,_)a"1 =0
}i("szal*a‘g:O, E(‘D‘,’Zazfa”l:O (62)
Egs. (62) are the fractional Birkhoff's equations
in terms of Riesz-Caputo derivative, and the

transversality condition Eq. (53) gives

ED:'aaaty | — EDgatda’) | =0063)

t t

1 1

6 Conclusions

In 1996, Riewe applied the fractional calculus
to dynamics modeling of non-conservative me-
chanical systems, and presented the issue of frac-
tional variational problem for the first time. Now
the fractional variational problems are attractive
topics in the fields of mathematics, mechanics
and physics. A number of important results have
been achieved. In this paper, a further study is
conducted on the fractional Pfaff-Birkhoff varia-
tional problems based on the Riesz fractional de-
rivatives. The fractional Pfaff-Birkhoff principle
is presented, and the fractional Pfaff-Birkhoff-
d’'Alembert principle and the fractional Birkhoff's
equations in terms of Riesz fractional derivatives
are established. The results in this paper are of
universal significance. Besides, the traditional
Pfaff-Birkhoff principle and Birkhoff’s equations
under the integer order derivatives are the special

cases of this paper.
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