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Abstract; Exact solutions of three-dimensional (3D) crack problems are much less in number than those of two-di-

mensional ones, especially for multi-field coupling media exhibiting a certain kind of material anisotropy. An exact

3D thermoelastic solution has been reported for a uniformly heated penny-shaped crack in an infinite magnetoelec-

tric space, with impermeable electromagnetic conditions assumed on the crack faces. Exact 3D solutions for the

penny-shaped crack subjected to uniform or point temperature load are further presented here when the crack faces

are electrically and magnetically permeable. The solutions, obtained by the potential theory method, are exact in

the sense that all field variables are explicitly derived and expressed in terms of elementary functions. Along with

the previously reported solution, the limits or bounds of the stress intensity factor at the crack-tip for a practical

crack can be identified.
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1 Introduction

Magnetoelectric (ME) materials are a new
type of functional materials, characterized by the
unique magnetoelectric coupling (or simply the
ME effect), which opens an avenue for many no-

[1.2]

vel applications The single-phase ME mate-

rials usually possess a very low ME coefficient,
and hence are impractical to be used in devices™ .
The composite ME materials consisting of both
magnetic phase and electric phase exhibit a prod-
uct ME effect, which is much stronger than the
single-phase case"*’. The recent two decades have
witnessed a fast growing research interest and
outcome in the study of composite ME materials
561

Composite ME materials are usually brittle
in nature, and susceptible to damage caused by
small cracks, voids and other defects. Thus, it is
important to carry out a thorough study of crack
problems in ME materials to obtain deep under-

standing of various coupling effects on their frac-
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ture behavior, wherein the mutual interactions
among electric, magnetic and elastic fields should
be considered. There already have been a lot of
investigations on two-dimensional crack problems
reported in Refs. [7-14], including in particular
the first two pieces of work on thermal crack
analysis by Gao et al'""'!. The three-dimensional
(3D) crack analysis also has attracted a certain a-
mount of research attention. For instance, Zhao
et al'"™ discussed the permeability of electric and
magnetic fields within the penny-shaped crack.
Zhong and Li**® further proposed a semi-permea-
ble model for the electric and magnetic fields
within the crack and studied its effect on the frac-
ture behavior of a penny-shaped crack. A similar
but independent research was reported by Wang

[17]

et al The 3D dynamic fracture problem of a

penny-shaped crack in an ME layer was consid-

1©87. There are only few works

ered by Feng et a
concerning 3D thermal crack analysis of ME ma-

terials, though as earlier in 2004, Chen et alt'®
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derived an exact 3D solution for a penny-shaped
crack embedded in an infinite ME medium subjec-
ted to a uniform temperature prescribed over the

L2oJ compared vari-

crack faces. Niraula and Wang
ous field intensity factors for impermeable and
permeable electric/magnetic conditions on the
crack faces. A penny-shaped crack subjected to a
uniform heat flux was later considered by Niraula
and Wang'". In is noted that, unlike Ref. [19],
Niraula and Wang®?" derived exact and explicit
expressions only for the field intensity factors.
This paper is a supplement to our previous

e electromagnetic

work where impermeable
conditions were assumed on the crack faces. For
transversely isotropic ME materials, exact 3D ex-
pressions for all field variables are derived here
for a penny-shaped crack subjected to uniform or
point temperature load when both the electric and
magnetic conditions on the crack faces become
permeable. The solution strategy closely follows
that in Ref. [197] by using the potential theory
method and based on a concise general solution,
which is expressed in terms of six quasi-harmonic
functions. Such general solution was first sugges-
ted by Chen!?! for piezothermoelastic problem. It
has been shown that the general solution is very
useful, in conjunction with the potential theory
method™,

problems for advanced materials with multi-field

in solving mixed boundary value

coupling. The present work is a further illustra-
tion of the versatility and elegancy of the general

solution and the potential theory method.

2 Basic Equations and General Solu-
tion

The equations governing the thermo-mechan-
ical behavior of a transversely isotropic ME medi-
um with couplings among electric, magnetic,
elastic and thermal fields can be written in Carte-
sian coordinates (x,y,2) in terms of mechanical
displacements (u, v, w), electric potential (¢),
magnetic potential (¢) and temperature change
(T) as follows
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where ¢ 5 €55 €5 qy» dys py» ps and Ay are the
elastic, dielectric, piezoelectric, piezomagnetic,
magnetoelectric, magnetic, pyroelectric and py-
romagnetic constants, respectively; @ and k; are
the thermal moduli and coefficients of heat con-
duction, respectively. A=23*/da* +3*/dy" is the
two-dimensional lLaplacian operator, and there
is ¢;; =cy» T 2¢5 for materials with transverse
isotropy when the material axis of symmetry is
perpendicular to the -y plane.

By virtue of the operator theory, Chen et
al'® derived the following general solution to

Eq. (1)

U=—A(D)w +iw,)
i=1

5 9‘1,
- p ! /3219273
Wi ;(Lh Jz,
5 PER
T= , = 2
Z,om . (2)

where a complex and compact notation is em-

ployed with U=u+1iv,w, =¢, as

:w7w2:¢sw3
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well as A=09/dx+19/dy, here i=+/—1. q; are

the combinations of material constants/'”, 2, =g,z
with so =+/ces/Cas s 55 =+/k11/ks; » and 5;,(i=1,2,

3,4) being the four roots (with positive real part)
of the following algebraic equation
— st +n, =0 (3)

where n; are also the combinations of material
[19]

nyst —ny st + nyst
constants For simplicity, it is assumed that
the four roots are distinct from each other, other-
wise, the general solution should take the form
different from Eq. (2).
The six functions ¥; (¢ =0, 1, ===, 5) in

Eq. (2) are quasi-harmonic, satisfying

{i)Z
( (72?)\1,’70

With the general solution in Eq. (2), one can ex-

i:Osla"'75 (4)

press stresses (g,,» z; ), electric displacements
(D;) , magnetic inductions (B;), and heat fluxes
(g;) as

5 P
O — Ey:’k ﬁ
i=1 ‘

Jz;

k=1,2,3,4
02 :_2('65A2 (ZW, +11p‘0>
i=1
:A(i%k«\‘; (777
i=1 (4

_/”“20,1A 7 Z 1) qk kggza

k=1,2,3 (5)

(72
where 6., =0.5 6.2 =D., 65 =DB., 6. =0, T0,,
0y =0, 0,1 2it,ys 0 =r1. tire, to=D,+iD,,
=B, +iB,, q.= q. tlig,, and ¥,y are the

material coefficients defined in Ref. [19].

3 Boundary Value Problem and Po-
tential Theory Method

Let us consider a flat crack S embedded in an
infinite ME space, with its surface located in the
x-y plane, see Fig. 1. An arbitrary temperature
O(x,y) is assumed to be symmetrically pre-
scribed over the upper and lower crack faces. In
contrast to the impermeable electromagnetic con-
ditions treated in Ref. [19], authors now assume
that the normal components of electric displace-
ment and magnetic induction, the electric poten-
tial, and the magnetic potential are all continuous

across the crack, i. e.

Fig. 1 Flat crack in infinite ME medium. occupying

region S in -y plane

D.(x,y,0") =D.(z,y,07)
$(x,3,07) =¢(x,y,07)
B.(x,y,0") =B.(x,y,07)
(25,07 =¢(x,y,07)

These are known as the permeable electromagnet-
[15]

(x,y) € S (6)

ic conditions on the crack faces
By the symmetry consideration, the solution
may be sought by solving the mixed boundary
value problem of the half-space x>0, with the
following surface conditions at x=0
0.=0,T=0(x,y), for (x,y)ES
w=0,q.=0, for (x,y) &S
$=0,¢=0, for —co<l(x,y)<{co
T =7y =0, for —co<l(x,y)<{oco
Compared to the one for an impermeable

crack™,

jump of electric or magnetic potential takes place

(7

the most significant difference is that no

across the crack with permeable conditions,
which leads to the assumption of the following
quasi-harmonic functions
v, =0,V (2)=h;H,(z,) +hp,H,(z;)
i=1,2,--,5 (8)

where h; are constants to be determined, and

[ e (N)

H, (rv0,2) :H&(N) [=In[R(M.N) + =] —

R(M,N)}dS (9

where w=w(x,y,0) and 9=9T(x,y,0)/dz are
the displacement and temperature gradient on the
crack surface, respectively. R(M, N) is the dis-
tance between the points M (r,0,2) and N(p, ¢,

0), see Fig. 1. In the following, the cylindrical
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coordinates will be alternatively used for simplici-
ty. In the above, the quasi-harmonic functions
have been expressed in terms of two potentials,
one itself being a standard potential of a single
layer (PSL), and the other related to PSL by dif-
ferentiation with respect to z twice.

To satisfy the fourth condition (i. e. the van-
ishing shear stress) in Eq. (7)., it may take

5
Dlvushy; =0 j=1.2 (10)

=1

It is known from the property of the potential of a

simple layer'*"?*! that

d 3*H,
(xsy)€8S: Hl =0, — =0
2=0 dz =0
HH ' H ab
(x,y)€S: 1 =—2nw, (752 =—2n9
=0 dz =0

Thus, the second and third conditions in Eq. (7)

give rise to the equatlon%

E — 61/ 2 h
0(11 i Q2 Il —
i=1
5 5
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Now the constants h;
Egs. (10,12) as

i=1,2 (12)

can be determined from

hl.f

ho;

hyy b= — L
J o

hy;

hs;
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Finally, in view of the first condition in Eq. (13),

we can get

w(N) ) J SN o
“’”AﬂRwO,N) 8 UJR(NO,N)dS 0
(14)
9N L
ﬂR(NO,N) 2ms3@(No) (15

where g,; = Zl_:]
indicates the distance between two points N, and

N, Ny, NES. In view of Eq. (15), Eq. (14) can

Yah; (G=1,2) , and R(N,,N)

be further rewritten as

AJ' w(N)

| RN, 18 7 7 2mge@ND [ (16)

It is seen that the integro-differential equa-
tion (16) and the integral equation (15) derived
above for the permeable electromagnetic condi-
tions have the same structures as those for the
impermeable electromagnetic conditions presented
in Ref. [19]. The difference between the two is
clear, that is, for the permeable electromagnetic
conditions there is only one integro-differential
equation, while for the impermeable electromag-
netic conditions, there are three such equations.
However, the difficulty in solving these equations
is at the same level because of the identical math-

ematical structure.

4 Exact Solutions for a Penny-
Shaped Crack

When the crack occupies a circular region of
radius a, we have a penny-shaped crack. In this

case, Egs. (15,16) can be written as

2w (fa ( y )
j() J() R ‘Od{OdSD

AHw<Rg;9>

_27'(55@((()0 9500) (17)

‘od‘odgo = — 27155212000 » g0 )/ gn

18

where R, =R(N,,N)=1/p" +p; —2cos(p—¢,) .

The solutions to Eqgs. (17, 18) can be ob-
[23]

tained by directly invoking Fabrikant's results

_ 858 [ 1 n
w(po, @) TtZgHJO JO Rharctan(Rh)
@(PO ’gDo)pod‘Oongo (19)
S5 dJ“ xdx .
9(ps ) = L (p) dol s (27 — "
L(l) dJ _edo 00 )
dI()(‘IiZ)lZ o o
(20)
where 77:«/642*‘02 «/azfpﬁ /a, and L ( « ) is an

operator defined as

. _i n (1*]22)][(500)
L) f(g) =5

1+ k" — 2kcos(p— ¢@y)

dg,

2
In the case of thermoelasticity without cou-

pling to the electric and magnetic fields, Chen et
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al®® showed that exact solutions could be ob-
tained when the temperature is prescribed on a
single point or uniformly over the whole crack
surface. In Ref. [19], only the solution for the
uniform temperature was given. In the following,
however, both solutions will be presented for the

permeable electromagnetic conditions.
4.1 Uniform temperature

If the temperature prescribed on the crack
surface is uniform, we have @(p,¢) =T, , where
T, is a constant. Then, it can be obtained from
Eqgs. (19,20)

255 T,

wlprgy =28l gr i (99

&1

Substituting the above results in Eq. (9) gives
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Here /,, [, are the two length parameters that
play important roles in expressing the analytical
solutions in terms of elementary functions‘?*/.

With H, and H, given in Eq. (23), the elas-
tic, electric, magnetic and thermal fields can be
obtained simply by differentiation
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Where lli

[21:%[ (r+a)+22 +/r—a)*+25 ],

4.2 Point temperature

For the case when temperature vanishes eve-
rywhere except the point (r,,0,,0), the exact so-
lution can also be derived by making use of the re-
sults obtained in Ref. [24]. To proceed, let us di-
vide the solution into two parts: one corresponds

to H,, and the other to H,. The first part, dis-
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criminated by the superscript "(1)”, is then given

by
SUp— é’”Zh,lf ()0,

g
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where @, is the magnitude of temperature at the
application point (r,,0,,0), and f;(2) are given
by
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The second part, discriminated by the super-

script "(2)", is given as
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where ¢ = e % /r,. The

Eqgs. (26, 28) gives the complete solution for the

summation of

point temperature load case.

5 Stress Intensity Factor

It's important and also interesting to study

the singular behavior of the stress field at the

crack tip. Noticing the following properties
2=0: [/, > min(a.,r), and I, > max(a,r)
300
one gains, for the uniform temperature, from
Eq. (25)

J —dssg1, Toa % r=a

_ 2
=0 —
lo

=
r-—a’ 3D
and, for the point temperature, from Eqgs. (26,

r>a
28)

O

25 5,1) l

e
P (32)

r*+rt —2rrycos(0—0, )@0 r=a
0 r<a

In the above derivation, the following property

O: ‘ =0

has been utilized

2
at—r 1

— 2rrocos(—0,)

(33)
limg; (2) ZW !
e at —ri ¥ +ri—2rrocos(0—0,)

It can be seen that the normal stress ¢. vanishes at

limf, (2)=—

2 2 2 2
rr—a r+r;

the crack surface for ¥<Za, which is just required
by one of the conditions in Eq. (7). This agree-
ment could be a partial verification of the current
theoretical analysis. Moreover, the expression of
0. for ¥==a is found to be identical to that obtained
by Tsail® in the thermoelastic case, thereby giv-
ing another strong support of our results. It is al-
so noted that the expression in Eq. (31) can be
obtained by simply integrating Eq. (32) over the
crack face.
If the stress intensity factor is defined as
Ko =lim {2t —ayo. |} D
then for the uniform temperature one gets
K, =—4ss/na, g1 T, (35)
and for the point temperature
Va’ —ri
Vra S0 @ 4 — 2ar,cos(0— 0,)
(36)
Note that Eq. (35) can be obtained from Eq. (36)

by simple integration.

K, _ 25581

The stress intensity factors derived above are

identical to those in form for the thermoelastic
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caset?,

However, due to the multi-field coupling
in an ME material, the value of the material con-
stant g, appearing in the stress intensity factor
will be different from that in the elastic counter-

part of the ME material.

6 Conclusions

This paper addresses the problem of an elec-
trically and magnetically permeable penny-shaped
crack in an infinite transversely isotropic magne-
toelectric medium. By employing the potential
theory method, the exact 3D solutions are derived
when uniform or point temperature is prescribed
on the crack faces. Both solutions are expressed
in terms of elementary functions.

The results obtained in this paper should
sServe as a necessary supplement to our previous

work! !,

which assumes impermeable electro-
magnetic conditions on the crack surface. Further
comparison shows that:

(1) For the impermeable electromagnetic
conditions, the electric and magnetic fields also
experience singularities at the crack tip, while for
the permeable electromagnetic conditions these
fields are no longer singular at the crack tip be-
cause of the continuity conditions specified in
Eq. (6)3;

(2) The stress intensity factors for the two
different and idealized electromagnetic conditions
provide the upper and lower limits of an actual
situation.

The present analysis can be further extended
to the case in which either the electric or magnetic
field (but not simultaneously) is permeable on
the crack faces. It is also interesting to consider a
problem of cracks subjected to heat flux rather

than temperature as discussed in this paper.
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