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Abstract; The paper deals with the thermoelastic damping in a rectangular auxetic plate during its free and forced

vibrations. Contrary to existing descriptions the relaxation properties of the thermal field as well as the negative

material (auxetic-material of negative Poisson's ratio) properties are taken into considerations.
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1 Introduction

The reciprocal interactions of the elastic and
thermal fields in bodies of finite extent have been
considered by many researchers!'. The definite
geometry of a body can be an origin of certain un-
usual phenomena. One of them is so-called the
thermoelastic damping which has nothing to do
with eventual viscous features of the body. The
result from that phenomenon of energy dissipa-
tion (not observed in the pure elastic body) in the
case, for instance, of the thermoelastic plate dur-
ing its vibrations, comes from an additional heat
flux normal to the boundaries of the plate. The
origin of that flux is the alternate compression
and extension of the upper and lower fibres of
that body. This way, in the case of the plate the
problem is 2D (plate)-3D (additional dimension
resulting from it thickness). Zener'™ first pointed
out that one of the mechanisms of thermoelastic
damping is based on the stress heterogeneities
giving rise to fluctuations of temperature. That
idea was, among others, developed by Alblast®™
and then by Maruszewski™. Ignaczak and Osto-

ja-Starzewski®! have proposed considerations
dealing with the thermoelastic damping based on
the extended thermodynamical model"*'. That
phenomenon is crucial in microscience, nano-

science and engineering.
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In the recent years materials with so-called
negative properties have been accurately investi-
gated for their very interesting and unexpected
physical features and behavior. Such properties,
among others, are characterized by negative Pois-
son's ratio ['#18,

The paper deals with the free and forced ben-
ding vibrations of a thermoelastic rectangular
plate, in which the thermal field is described also
by one relaxation time. The particular analysis
has been made both for the classic and auxetic

materials.

2 Basic Equations

The subject of our considerations is a rectan-
gular thermoelastic plate: 0, <<a, 0, <<,
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The equations which govern ther-

moelastic processes in that plates with the relaxa-

tion of the thermal field have the following
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pansion coefficient, T, the reference tempera-
ture, £ the heat conductivity coefficient, and c,
the specific heat. The mass forces and heat
sources have been neglected. ¢ denotes the ther-
mal relaxation time. Coefficients E; and vy in
Egs. (1,2) have to be taken in a constant temper-
ature. The moment My, due to the temperature

distribution, is given by

h
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and w is the deflection. In the sequel we confine

only to a simplified form of e, i.e.
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In the considered case of a pure small bending,
Poisson’s ratio in Eq. (4) has the effective value
dependent on the vibrational mode but it does not
much differ from yr. So., in the sequel we assume
that y=y;. For the model of interactions taken in
the paper, we assume that the changes of temper-
ature come only from vibrations of the plate and
there is no thermal influence from surrounding.
The boundary conditions for Eqgs. (1,2) are
as follows (the plate is simply supported on all
edges)
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The conditions (8—10) indicate that the temperature
at lateral surfaces has been determined. At the remai-
ning boundaries temperature varies because of alter-
nate extension and compression of upper and lower fi-
bres of the plate during vibrations. At those bounda-
ries the free heat exchange has been assumed, so
there is no temperature jump across upper and lower
surfaces. In Eq. (10), 7 is the surface heat exchange

coefficient.

3 Free Vibrations of Thermoelastic
Plate

Since we are interested in description of the
thermoelastic damping of the rectangular ther-
moelastic plate with Poisson’ s ratio v = vy €
(—1;0.5) during free bending vibrations, solu-

tions of Egs. (1, 2) with conditions (5—10) and
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p=0 are looked in the forms.
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For the sake of simplicity, only first terms of
expansions (11,12) are taken into considerations
and denoted in the sequel that wg, = w, and
Goo11 = Ooo

Let's take care of a material with the follow-
ing properties: E+ = 10" N/m’, ar =3 X 10 ¢
K ',p=7 860 kg/m’, k=58 J/smK, ¢,=460 J/
kgK, z=10"" s, h=0.005 m, a=1 m, b=1 m,
T,=100 K.

From Fig. 1 it results that the first self-fre-
quency achieves the highest values if the plate is
in the auxetic state reaching minimum for v =20
and being almost constant for the natural state.

Fig. 2 indicates that the thermoelastic damp-
ing is the least in the auxetic state if Poisson’s ra-
tio also increases depending not much on the plate

thickness.
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Fig. 1 First self-frequency vs. Poisson’ s ratio for

different plate thickness
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Fig. 2 Thermoelastic damping vs. Poisson’s ratio for

different plate thickness

The distribution of the temperature ampli-
tude along the plate thickness is shown in Fig. 3

both for the auxetic and natural material states.
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Fig. 3 Distribution of temperature amplitude along the

plate thickness

It can be seen from Fig. 3(b) that if the tem-
perature amplitude and bending are phase shifted
of /2, the thermal field in the reasonable big

central region of the plate practically vanishes be-

cause of the thermoelastic damping. Then the
auxetic state becomes visible if y—>—1.

From Fig. 4 it results that the first self-fre-
quency does not practically depend on the refer-
ence temperature (independent of the surrounding
temperature). But the thermoelastic damping is

strongly dependent on the surrounding tempera-
ture (Fig. 5).
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Fig. 4 First self-frequency vs. Poisson's ratio for three

reference temperatures (T, =10, 100, 273 K)
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Fig. 5 Thermoelastic damping vs. Poison’s ratio for

different reference temperatures

And the thermoelastic damping almost line-
arly depends on the reference temperature T, for

different values of Poisson's ratio (Fig. 6).
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Fig. 6 Thermoelastic damping vs. reference tempera-

ture for different Poisson's ratios

4 Forced Vibrations

Now we are interested in description of a rec-
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tangular plate forced vibrations accompanied by
the thermoelastic damping. The general solutions
of Egs. (1, 2) with the boundary conditions
Eqgs. (6—10) are looked in the Eqgs. (11,12)
Those solutions concern situation that our
problem is 2D-3D, as it was mentioned before.
For the case that the plate vibrations have forced

character, we assume that the upper surface ;=

T s Toaded by (see Eq. (1))

2
p= Z ZPOO/HH Sin(%xl) Sin(%xz

) eiw/
m=1 n=1
(13>

For the sake of simplicity, only first term of

Eq. (13) is denoted by the sequel that py, = poo.
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