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Abstract: There are two types of singularities in the linear thermoelasticity. The first one arises in the field of
stresses if a force is applied to one point of the body. This singularity is physical and should be accepted. The sec-
ond type of singularities is nonphysical and they arise in the fields of displacements and temperatures. There exist
the nonlocal theories and gradient theories which have the goal to introduce the finite stresses instead of the infinite
ones. The MAC model of the thermoelasticity is created to avoid the nonphysical singularities and it accepts the in-
finite stresses. MAC is the method of additional conditions, which allows introducing the new model to use the
classical model, plus additional condition of the physical nonsingularity and/or condition of the good behavior of the
solutions at infinity. The MAC Green's functions for the heat conduction and for the elasticity could be introduced
using the differential MAC models. The infinite and finite bodies are considered. The principle of superposition is
applied to obtain the integral equations to solve the boundary value problems. The strength criteria based on finite

stresses could be changed in this model because the infinite stresses are allowed. The strength criteria based on de-
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formations are applicable. Classification of MAC models is given.
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1 Introduction

The classical continuum mechanics considers
constitutive equations for the stresses. However
the equations of motion of the small control vol-
ume of the continuum media include not only
stress-vectors applied to the surface of an element
but also the body-forces as in Refs. [1,2]. Then
it is not logical to avoid the constitutive equations
for the body-forces.

Different examples of the constitutive equa-
tions for the body-forces are considered in this pa-
per. The obtained mathematical models are called
the MAC models. MAC is called the method of
additional conditions™, and the additional condi-
tion in this paper is the second constitutive equa-
tion for the body-forces.

The two constitutive equations could be con-
sidered as a point in the plane with two coordinate
axes. The first one is the axis for stresses and the

points on this axis different from existing theories
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like elasticity, plasticity etc. The second one is
the axis for the body-forces and the points on that
axis different from constitutive equations for the
body-forces such as elasticity, plasticity, and
many others. Then the power to analyze theoreti-
cally the behavior of the continuum body will be
now

N? @))
where N is the number of existing constitutive
equations for stresses. Moreover the third consti-
tutive equation for the body moments could be in-
troduced, and then the theoretical power to ana-
lyze the continuum will be of the order N?. But
the third constitutive equation is not applied in
this paper.

For example, the constitutive equation for an
elastic body could be taken for stresses, and the
constitutive equations for viscous flow are used
for the body-forces.

The simplest theories of an elastic body and

of the heat conduction are presented in this paper
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to show some properties of the models with two lowing equation will be obtained
constitutive equations. I’ u 2’ u
d ('7(7 Z+po+P1*(,}z (6)
The MAC models for thermoelasticity with gx It
one constitutive equation are considered in where
EA
Ref. [4]. =22 p():qi’ pl:q; (7
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2 Tension of an Elastic Bar
2.1 Statement of the problem

Consider the simple tension of an elastic bar,
where the initial or the reference frame of a bar
corresponds to the zero displacements, strains
and stresses in the bar.

That state of a bar could be found using the
known temperature distribution and the Duhamel-

2] This law gives the distribution

Neumann law
of strains in the body, when the stresses are zero
and the temperature distribution is available.
Then the displacements will be found using the
known strains. That is the natural initial state of
the body, which is taken above.

The equation of one-dimensional motion of a

bar is

'u

IN
aﬁquﬁqu :‘Oﬁ (2)

where N is the normal force applied to the cross-
section of a bar, x a Cartesian coordinate of a
cross-section, and 0 <Z x << L, L the length of the
bar, u the longitudinal displacement of the trans-
versal cross-section of the bar, ¢ the time, g, an
elastic body forces reaction, and g, the density of
the external longitudinal body forces per unit
length. It is assumed that the body force ¢ is the
sum of two parts, where the first part depends on
the state of deformation of the body, and the sec-
ond part of the body forces represents the exter-
nal given forces like gravitational forces, that is

7=q Tt ¢ (3)

The Hook law is

N = FEAe 4)
where E is the Young modulus, A the constant
cross-sectional area, and e the longitudinal strain,
which is supposed to be small

_Ju 5)

T ax

Substituting Egs. (4,5) into Eq. (2), the fol-

2.2 Classical solution

Consider the steady state problem for a bar
as a particular problem. Let the external distribu-
ted force p; be not given and the inertial term be
neglected. If the second constitutive equation is
not taken, p, =0, and Eq. (6) becomes

2
d'u
~ =
dx*

0 (€D

Consider the boundary conditions

u(0) =uy =0, u(L) =0 (€D)]
The general solution of Eq. (8) is
u(x) =Ax +B (10)

where A,B are arbitrary constants. If the length
L of the bar is limited, the solution of the prob-
lem Eqgs. (8,9) is

u:MO(l—%) (1)

If the length of the bar is infinite, the two
discontinuous solutions could be obtained. The
first one follows from the solution Eq. (11) for
the finite bar as a limit L. — oo, That is

ulx) =u, 0 ax < oo (12)
u(co) =0 (13)

The second solution for an infinite bar will be
obtained if we take the general solution Eq. (10)
and satisfy the second condition of the Eq. (9) at

infinity. Then we get

A=0, B=0 14

and the second solution becomes
u(0) =u, (15)
u(x) =0 0<<ax<Loo (16)

The situation for unlimited bar is undeter-
mined because there are two absolutely different
and discontinuous solutions Egs. (12,13) and
Eqgs. (15,16). It seems that the limit solution
(Egs. (12,13)) for the finite bar is the most de-
sirable. But there exist the theories, for which the

solution (Eqs. (15, 16)) is a desirable limit
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solution. The equations below are taken form
Ref. [5].

2.2.1 Mindlin's theory

The one dimensional equation corresponding

to the bar is

1
d L:ZO
Jdax

<A+2#>%§— [ QA+ Epl

aan
where A and p are the Lame constants, /; and [, the
internal length scale parameters that account for
the microstructural effects.

The solution for the infinite bar will be

U=uze (18)
where
b= M (19)

Q4w+ Gp
The constants /; and [, are small parameters ac-
cording to their physical sense. Then the solution
Eq. (18) corresponds to Eqgs. (15,16).
2.2.2 Eringen's theory
This theory creates the following equation
*u _
dx’

(20)

This equation coincides with classical one, that is
considered before in the Section 2. 2.
2.2.3 Aifantis theory

This theory creates the equation

(1—12 i)cma%‘:o 2D

dxt
where [ replaces {; and [, in Mindlin's theory, Ciin
is a component of the constitutive tensor. This
theory could be considered as a simplification of
the Mindlin model. Then the required solution for
the infinite bar is

u=uye (22)
The solution Eq. (22) is an approximation to the
solution Egs. (15, 16), because the parameter [ is

small.
2.3 MAC model

Let us consider one of the MAC models of
the tension of an elastic bar according to Ref. [2].
The linear term is introduced into Eq. (8)

' u
dx’

—au =0 0<x< oo (23)

where a > 0 is a parameter, which should be de-

termined in experiment.
Then the solution for an infinite bar will be
u=u,e 24)
If the additional term in Eq. (23) is supposed to
be small, the solution Eq. (23) is an approxima-
tion to the solution Eqgs. (12,13).

The model (23) could be considered from
two points of view. The first one corresponds to
the model with one constitutive equation, and the
correspondent Hook law is

IN

dx

—EA 2 EAau (25)
dx

The second point of view corresponds to the
model with two constitutive equations, where the
constitutive equation for body forces creates

qo = —au (26)
3 Linear isotropic elasticity
3.1 MAC model 1

The equations of motion for the linearly iso-
tropic elastic solid are given according to Ref. [ 6]
in the following form

o ;i; —oB+ A+ Vet Via (2D
where dilatation e is
e =divu (28
and u the displacement vector, which does not in-
clude the free thermal displacements, p, the den-
sity, poB the body force per unit volume, A and u«
are Lame's coefficients or Lame's constants, V is
the gradient, and V* the Laplacian. The variables
X, .2, x5 are Cartesian coordinates of a point be-
longing to the domain Q.
Let the body forces be the sum of two parts
ooB=p,C+ oD 29)
where p,C is the external body forces per unit
volume, and p,D the internal elastic body forces
per unit volume. Let
00D = — du (30)
where d is a constant, which should be deter-
mined experimentally. Then Eq. (27) will take
the form

o %:poc—du F QA+ Vet uViu (3D

Eq. (31) is the equation of the MAC model 1

for the linearly isotopic elasticity. This equation
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could be considered as a generalization of Eq. (6)
for a rod. An important property of Eq. (31) is
the real behavior of the displacements at infinity
for 2D elastic problems. The classical equations
can show the unbounded growth of displacements
at infinity.

3.2 MAC model 2

If a force is applied to one point of an elastic
body then Eq. (31) allows the infinite displace-
ments at that point. It seems to be not true for the
real body, because the force could be applied to
one molecule or to one atom and displacements of
that particles are finite. The goal to obtain the fi-
nite solutions in the described situation can be
reached using the differential MAC models in
Ref. [27]. Then the body forces include an addi-
tional term as a result of interaction of the applied
force and the state of deformation of the body.

The equations of the MAC model 2 for an in-
finite linearly isotropic elastic body will take the
following form

de

At o=+ Vi —du =
#(I,+1 7yl'+1) aui X — t) +
LU[(IHH — Y1) 24 (xi2 — Yirs) ? Az ( ¥
p(xiy — Vi) Ju; (x—y,t)+

(i1 — Y1) P+ (T2 = Yir2) : (oK

2% u,
00 7;' (x—y.0) — 0,C.(x — y.0) Jdy, dy, dy,

(32)

There exists another way to get the finite
displacements under the applied force. It is possi-
ble to put the term of higher order into the ex-
pression of body forces. Then the gradient theo-
ries with two constitutive equations should be
considered. But this model is not considered in

this paper.

4 Heat Conduction
4.1 MAC model 1

Consider the classical heat conduction prob-

lem with the equation according to Ref. [4]

Pu | Fu | u o Ju
k(axz +ay2 +azz>+% +q _CO‘OE (33)

where x,y,z are Cartesian coordinates, ¢ is time,

u(x,ysz,t) the temperature, p(x,y,z) the mass-
density of the body per unit volume, ¢, the specif-
ic heat, k the coefficient of thermal conduction, ¢,
a rate of internal heat reaction per unit volume,
and g, a rate of internal heat generation per unit
volume, produced in the body. The introduced in
Eq. (33) term g, corresponds to the body forces
reaction, considered above in the elastic body.

The different MAC models will be obtained
for the different constitutive laws describing q,.
The MAC model 1 could be considered for

qo = —au (34)

where ¢ is an additional parameter, which could
be determined experimentally. Then Eqgs. (33,34)
will give

du
ey

The MAC model 1 will exclude the nonphysical

growth of the temperature for infinite body in 2D

/CVZU*O(M +CI1:C0 (35)

heat conduction problems.
4.2 MAC model 2

Let
g =—au—BV'u (36)
where a8 are the parameters, which could be de-
termined experimentally. Consider the following

equation
— BV 'u+kVu—aut+q :cop% (37)

Eq. (37) does not have a singularity in tem-
perature in 2D case of a source at some point, and
the strength of the source is finite. Consider a
steady state problem for an infinite body with the
axis of symmetry and without internal sources.

Eq. (37) in cylindrical coordinates will be

)
(38)

7 dr\' dr
The boundary conditions are taken in the form
u(0) =uy, # 0, u(co) =0 (39)
The general solution of the Eq. (38) is
ulr) =C I, (Air) +CK (A1) +
Cy Iy (Aer) +C, Ky (A1) (40)

where C,,C,,C;,C, are arbitrary constants, the

)*au:O

parameters A, and A, equal

/11’2:/&4@ V/;_B_ZLQ>O 41)
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IfC, =C, =0, then the second condition of the
Eq. (39) will be fulfilled. The first condition in

Eq. (39) is satisfied in case

C,=—C, = 42)

Then the solution of the stated problem ( Egs.

2 0
ulr) = u/\ |:KO( Al T)iKO(A//lg r>:| (43)
2
n ==
Ay

The MAC model 2 gives the finite tempera-
tures of the source, and the strength of the source
is also finite.

The MAC models of the type Eq. (37) are of
the higher order differential equations, but they
seem to be more simple as the MAC models of
the type Eq. (32), which of that models is the
best with respect to reality could not be decided in

this paper.
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