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Abstract: The thermoelastic plane problems of two-dimensional decagonal quasicrystals (QCs) are systematically
investigated. By introducing a displacement function, the problem of thermoelastic plane problems can be simpli-
fied to an eighth-order partial differential governing equation, and then general solutions are presented through an
operator method. By virtue of the Almansi’s theorem, the general solutions are further established, and all expres-
sions for the phonon, phason and thermal fields are described in terms of the potential functions. As an application

of the general solution, for a steady point heat source in a semi-infinite quasicrystal plane, the closed form solu-
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tions are presented by four newly induced harmonic functions.
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1 Introduction

An increasing number of quasicrystals (QCs)
with good thermal stability make thermoelasticity
analyses for QCs more and more important. Fur-
thermore, in view of the fact that QCs have a po-
tential to be used as the components in drilling

and nuclear storage facilities™”

, it's very necessa-
ry to study the influence of the temperature for
QCs. For the general solutions of QCs, thermal
effort is always beyond the scope of the studies.
Wang et al'® derived the general solutions for
thermoelastic problems of two-dimensional (2D)
decagonal QCs by using the complex variable

1©) inferred the general solu-

technique. Li et a
tions for three-dimensional (3D) thermoelastic
problems of one-dimensional (1D ) hexagonal

QCs. For plane
1m

piezothermoelastic medium,

Xiong et al™! and Kumar et al®® deduced the gen-
eral steady state solution, respectively. The gen-
eral solutions for 2D plane thermoelastic prob-
lems, such as 2D decagonal QCs have not been

attempted. The purpose of this paper is to sys-
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tematically investigate the thermoelastic plane

problems of two-dimensional decagonal QCs.

2 Basic Equations

2D QCs refer to a 3D solid structure with
two quasi-periodic arrangement directions and one
periodic direction. For 2D QCs with Cartesian co-
ordinate system (x,,x;.25), we assume that x; -
x, is the quasi-periodic plane and x5 is the periodic
direction. Due to the mathematical complexities,
3D problems of 2D QCs are difficult to be analyti-
cally solved. In order to explicitly study the pho-
non-phason interaction, only plane elasticity the-
ory is considered in this paper. Since the x;-x,
plane is the quasi-periodic plane, we can employ
the x,-x; plane or the x,-x, plane for the study
of plane phonon-phason coupling phenomena. In
the present work we chose the former, so this
problem can be decomposed into an anti-plane
problem and an in-plane problem. In this paper,

only in-plane problem is considered, the field var-
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iables are independent of x,, such that 9, =0,

where 9, = (7/(71.1,. For 2D decagonal QCs, the

point groups 10mm, 1022, 10m2, 10 /mmm be-
long to Laue class 14. In the absence of body
forces, the general equations governing the plane
2D decagonal QCs can be written as
e; =0.50u; +du;), wy =9dw, @)

doy =0.0,H,;, =0  ij=1.3 ()

o1 =Cnen +Cueyy + Ry — T

o33 =Crsenn + Cosess — 3T

013 =031 = 2C, 63

H, =Re,, + K w;,.Hj; =K, wi;

where u; and w, denote phonon and phason dis-

3

placements in the physical and perpendicular
spaces, respectively; ¢; and ¢; are the phonon
stresses and strains; Hj; and w,; are the phason
stresses and strains; C;;, Ci3, Cy5, C,y represent
the elastic constants in phonon field; K;, K, are
the elastic constants in phason field; R is the pho-
non-phason coupling elastic constants; f;, 3; are
the thermal constants; T is the variation of the
temperature. By virtue of the parallel method
proposed by Gao et al®, the equilibrium equation
can be represented with u; and w, as follows
(C113+CudHuy +(Cis +Ciy) 31 d5us +RIFw, —
8.2, T=0
(Ciy+Ci)d1d5u +(Cy a7 +Cyyd3uy — 3,9 T=0
Riu, + (K, 3+ K, 93w, =0
€Y
Assuming that the thermoelastic loading
changes slowly with time and without considera-
tion of the rate of entropy, the uncoupled ther-
moelastic theory of QCs is adopted in the follow-
ing analysis. In a steady-state, the heat conduc-
tivity equation is
(k1 9% +k33d5) T =0 (5
where k,; and k,; are thermal conductivity coeffi-
cients. In a similar manner to transversely iso-
tropic elasticity!™ and piezoelasticity™™ , the bal-
ance Eq. (4) and heat conductivity Eq. (5) for the
problem is
AU =0 (6)
where the vector U=[u; su;,w, , T ]" (the super-

script "T” denotes the transpose) ; A is a 4 X4 dif-

ferential operator matrix, such as

A=

Cidt+Cuat  (Cy+Ci)ddy,  Ro? —49,
(CatCi) 005 Cudi+C3303 0 —B0;
RJ? 0 K, 0t +K,9; 0
0 0 0 k2t

In terms of Eq. (6), it seems to be extremely
difficult to find the solution by means of direct in-
tegration due to the complexity of the equations.
Furthermore, a decomposition and superposition
procedure is manipulated to simplify the compli-
cated governing equation by introducing a dis-

placement function.

3 General Solutions of Problem

By virtue of the operator analysis tech-

[6-910] " the general solutions of the problem

nique
will be developed. Introduce a 4 X 4 differential
operator matrix B, components B; of which are
"algebraic complement minors” of A in Eq. (4),
L. e.
AB =BA = A1
where A, is the "determinant” of the differential
operator A, I the unit matrix. Then the general
solution of Eq. (5) can be expressed as
U =Bg
where the displacement function vector ¢ satisfies
the following equation
Ajp=0
The "determinant” A, of A yields
Ay = (ky 97 + k3393 (ad} + 0I195 + ¢d1d3 + dat)
D)
where
a=CyCuK,
b=Cs3C K, +(C,,Cyy —Ci, —2C1,C DK,
c=CpCuK,+(C,Cy3 —Ci;—2C5;C) Ky — Cyy R?
d=C,C,K,—C,R*
Now introduce a displacement function H,
which satisfies
ViViViViIH=0 ®
where the quasi-harmonic differential operators
V! are expressed as
Vi=23a]+ /s

Here q=1,2,3,4, s? =k /kyssi, siand s? are
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the three characteristic roots (or eigenvalues) of Here set «=1,2,3, where
the following cubic algebra equation 1 1 1 1 1
& & d AMI:(,{Q*]}H 7+L‘ajal4q:a*57+c‘7*dj
as® —bs' + s —d=0 D) K K %q %q %

If the index g is taken to be 1, 2 or 3, three
sets of general solutions with T=0 will be ob-
tained, which are actually the elastic general solu-
tions without thermal effect. Taking ¢ =4, we
can obtain
wuy=B,H,us;=B,H,w,=B;H,T=B,,H (10)
or

uy = (a,d5 + 0,995 +¢,91)d, H

u; = (a,ds +b,3795 +¢,91)d, H

w; = (39795 + ¢;d1)d, H

T = (ad$ +0d19; + cd19; +dI})H

where

ay =—Cyu Ky pi + (Ciy + C) Ky
by =—(Cu K, +C,K)B + (Ciy +Ci) K\ B
o =—CuKiBisa, =CuKifssa; =0
by =—(Ci; +C.OK, B + (CuK, +Ci KB
¢, =—(Cy; +C.OKB +(CLK, — R
by =CyRBy — (Ci; + Cu)RBs scs = CuRp,

By utilizing the generalized Almansi's theo-
rem"'" the displacement function H can be ex-
pressed by four quasi-harmonic equations H,
in five distinct forms as
=
H,+H,+H,+H, sEAS A F s
H,+H,+H,+x,H, siAEsE A=t
H, +xyH,+H,+x,H, si=g
H +H,+x,H,+x*H, s
H +xH, +25H, +xiH, si=s

where H, satisfy the following second-order equa-
tions
VLH, =0 an
in which the upper case subscript Q takes the
same number as the corresponding lower case ¢,
but with no summation convention. Therefore,
the eighth-order Eq. (8) has been replaced with
four quasi-harmonic equations.
In this paper, only the case of distinct values
s, 1s concerned. Then, the general solution can be
written as
uy, =X, 0195 H, yus =2,,05H, ,
w :qualﬁéHq,T:Mqaqu 12

For further simplification, assume that
¢, =Aidt H, (13
From Egs. (8,11), it can be seen that ¢, satisly
the following equations
Vg, =0 14
Therefore, the general solutions of the ther-
moelastic plane problems of 2D decagonal QCs
can be expressed in terms of the four quasi-har-
monic functions ¢, as follows
Uy =0q, 91 ¢y s Uz =1m1,95 ¢,
{wl =My, 1y s T=m3,35 ¢,
o1 = *lh,agsbq vo33 =1,,95 ¢q/szQ yo13 = 11,9195 ¢,
Hy=—10,,95¢, Hi;=1,,0,9;¢, (16)
lllq:CH (Sq, Tmy) s Loy, =K,my,
where ¢, is the Kronecker Delta symbol, m,, =
Aog/A1q s Moy = Asg /A1 s May = Asy/A1q. When g=1,
2, 3, my,=0.

(15)

Eqgs. (15 —16) are the general solutions of
this thermoelastic plane problem in terms of dis-
placement functions ¢,. If boundary conditions
are given, the analytic solutions can be obtained

for the boundary value problems.

4 Steady Point Heat Source in Semi-
infinite Plane

Consider a semi-infinite QC plane x3; =0
whose quasi-periodic direction is the x,-axis, and
whose periodic direction is x3-axis as in Fig. 1. A
point heat source H is applied at the point (0, h)
in 2D Cartesian coordinates (x; ,x3) and the sur-
face (x; =0) is free. Based on the general solu-
tions, the thermal field in the semi-infinite QC
plane is derived in this section.

The boundary conditions on the surface x; =
0 are
o33 =013 =0, H,;3; =0,9,T=0 a7
For future reference, a series of denotations are
introduced as follows

2, =5,X3shy = s,h

_ /2 z
— VX TLqu
— 2 2
A X +qu

T =2, T hysry

Zge — Xy 7}1;\, o Vg
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X,

o -

Fig. 1 Semi-infinite QC plane applied by a point

source H

Introduce the following harmonic functions
Sbll :A‘I *
{% (zho — D) (ln;QQ *%) — x1zgarctan 571} +

[8.8]

Ay [% (2 —at) (hler *%) —x, zg arctan 171}

Rez
(18)

where A, and A, are twenty constants to be de-
termined. Substituting Eq. (18) into Egs. (15—
16), the expressions of the coupled field are as
follows
=0 A [, (nrge —1) trgearctan (2, /20 ) 1~

S o [x) (Inrg. —1) Tzgearctan (1, /2. ) ]
s =my 5 Aglrae (Inrge—1) +aarctan (2 /2q0) ]+

Mg A L2qe (Inrge —1) Fayarctan (2 /2 ) ] (19)
w =—myA 1) (Inrgg —1) Tzgqarctan (2, /2q0) ]—

myA g2y (Inrge—1) T2qearctan (xy /2q. ) |
T=ms, Aslnry TmsAglnry,
o =—sil,Aglnreg — sl ,Ag Inrg,

033 :Z]quln;QQ +Z]quk lner

013 = —s,1,Agarctan (x, /200 ) — Sl 1A @ *

arctan (a1 /zq ) 20)
Hy =—s1,Aqlnreg —sil s, A g Inrg
Hiy=—s,0s,Aqarctan(x1 /2aq ) —S,loAa *

arctan (xy /zg )
Considerating the continuity on plane x; =h
for u; so13 and Hyy yields
mys,Aq =0 2D
s Aq=0 B=1,2 (22)
Substituting Eq. (16) into Eq. (22), by virtue of
Eq. (21), Eq.(22) can be simplified into one
equation
sAy=0,mps,Aqg =0 (23)
When the phonon, phason and thermal equilibri-
um for a cylinder of a, <<axy,<a, (0<<a, <h<a,)

and 0 << r < b are considered, three additional

equations can be obtained

j , [033 (x1saz) — o33 (X1 vy )]dll +

—b

J“Z [613 (bafs)*o'lg (*bafa)]dfgzo (24)

4

b
*kssj [asT(Il ’az)*asT(Il say) :| dl‘l -

—b

/\mrz [0 T(bors) — s T(—bozs) Jdas = H

1

(25)
Substituting Eq. (20) into Egs. (24 —25) and in-
tegrating, we can obtain

Z1(;14(111 + Zl{,&@Akuz =0 (26)
AL + 0rAnl, :H/m34 A ML MUss 27

where
ILL=1,=I1,=0,I,=—2xn 28
Thus, Eq. (24) is satisfied automatically. A, can
be determined by Eq. (27) as follows
H

Aj=—— (29)
2y ki ks

Finally, when the coupled field on the sur
face x3=0 is considered, substituting general so-

lutions Egs. (15— 16) into boundary conditions

Eq. (17) and using s, =+/k11 /ks; » we can obtain
— sl oA q T sil Ak =0
LAg+ LA, =0
A, —AL=0
A, =0

Thus, twenty constants A, and A, can be deter-

(300

mined by twenty equations, including Eqgs. (23,
29—30).

5 Conclusions

On the basis of the operator method and the
introduction of the displacement function H, the
general solutions of thermoelastic plane problems
of 2D decagonal QCs are first presented. The in-
troduced displacement function H has to satisfy
an eighth-order partial differential equation. Ow-
ing to complexity of the higher order equation, it
is difficult to obtain rigorous analytic solutions di-
rectly and not applicable in most cases. Based on
the Almansi's theorem, and by virtue of a decom-

position and superposition procedure, the general
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solution is further simplified in terms of four qua-
si-harmonic functions ¢,. Considering that the
characteristic roots s- are distinct, the obtained
general solutions of 2D decagonal QCs are in sim-
ple forms which are conveniently applied. As an
application of the general solution, for a steady
point heat source in a semi-infinite QC plane, the
closed form solutions are presented by the four
harmonic functions.

The general solutions are very convenient to
be used to study the inhomogeneity and defect
problems of 2D decagonal QCs. These also pro-
vide basis to judge the rationality of the solutions
by the finite element method or the boundary ele-
ment method. The analysis method in this paper
can also be used to solve the more complicated

thermoelastic plane problems of 2D QCs.
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