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Abstract: The semi-permeable boundary condition is proposed to discuss the influence of the thermal conductivity

acting on the stress and heat flow around the hole. Based on the Stroh formalism, the closed form solutions are de-

rived, the stress and heat flow around the hole are discussed. The results show that the thermal boundary condi-

tion has significant influence on the hoop stress and heat flow around the hole. The hoop stress decreases dramatic-

ally with the increasement of the thermal conduction coefficient.
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1 Introduction

Widespread attention has been given to the
thermal stress problems with inclusions, holes or
cracks. For example, Florence and Goodiert/,
Siht¥, Parton'™ , Zhang and Hasebe!™ , Chao and
Shen""*, Kattis and Patia™”, and Kaminskii and

J studied the thermal stress problems

in isotropic media, and also Sturla and Barber™,
Hwu oM, and Wang!'?’, Chao and
Chang'™, Lin et al'" and Shen and Kuang"®

discussed the thermal stress problems in aniso-

Flegantov'®

Tarn

tropic materials.

In recent years, the thermo-electric-mechani-
cal coupling problem in thermopiezoelectric media
with holes or cracks has also received much atten-
tion with increasingly wide application of ther-
mopiezoelectric materials in the engineering. Gao
and Wang!'® studied the 2D problem of thermopi-
ezoelectric materials with cracks by means of the
Parton assumption, i. e. the crack is considered
as a thin slit and thus the normal components of
electric displacement and the tangential compo-
nent of electric field are assumed to be continuous
across the slit®™. They also presented an exact
solution for the problem of an elliptic hole or a

crack in a thermopiezoelectric solid™™. The frac-
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ture analysis of a cracked thermopiezoelectric me-
dium with thermoelectric loading has been dealt
with by Ueda®.

However, all the references above supposed
that the normal component of the heat flow could
be treated as zero at the rim of the hole. In the
present work, a semi-permeable thermal bounda-
ry condition is proposed to discuss the influence
of the thermal conductivity acting on the stress

and heat flow around the hole.

2 Basic Equations

The governing equations for piezother-
moelastic problem can be expressed, in the sta-
tionary case without body force, extrinsic bulk
charge and heat source, as folllows:
Governing equation
g =0 (D
Constitutive equation
g =—x; T (2)
where ¢;s A;, T(i,j=1,2) are the heat flux,
heat conduction coefficients and temperature, re-
spectively.
From Egs. (1—2), we have
T=2Re[g'(z)] =z =mx + s (3)

where e :(*/112 +iI€, )//122 s K — (;\11)(22 */ﬁz ) ’
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Ankzz _A%z >O.
Substituting Eq. (3) into Eq. (2) yields

g1 =2Relipm.g’ (2] 4

g, = —2Re[ix, g’ (2] (5)
and

q,ds =q,dx; — g, dx, (6)

On the other hand, the resultant heat flow Q can

be expressed as
Q :Jq,,ds @)

Substituting Eqs. (4—6) into Eq. (7) yields
Q=2Rellix,g" ()] (8)
The semi-permeable boundary conditions of
heat flow is
q, =2A1q; cosl+ X, q5 sind 9
where A, and A, are two thermal conduction coeffi-
cients.
The complete set of governing equations are
oy =ciu¥n —ei B, —p; T (10)
D, =¢,E, +e,y, + T (1D
where iy = Cji = Cijr = Cuij 5 €rj = €rji » €5 — €ji 3
By =B isjokil=1,2,3,

electric displacement and electric field, respec-

. 0» D, E are stress,

tivelys cyus ewj» €55 B and ¢; the elasticity con-
stants, piezoelectricity constants, dielectric con-
stants, stress-temperature coefficients and pyroe-
lectric coefficients, respectively.
Equilibrium equation are
65, =0.,D,, =0 (12
Substituting Eqgs. (10 —11) into Eq. (12)
yields
Cejru, +egip) o — B3 T =0
(—ewpt+epu,) +oT,=0 13
Introduce two function vectors u= Cu; »u; s us ,¢)T
and 9= (g1, ¢25¢1.0) "
The homogeneous solutions of Eq. (13) are

w, =Af(z.)+Af(z.)

- 14>
¢, =Bf(z.) +Bf(z.)
and the particular solutions are
=2Releg (2,)
“ ches (=) (15)

@, =2Reldg (2]
where ¢ and d are the heat eigenvectors, which
can be determined from the following equations
D. (u)e=p + up-
d=(R" +uWiec— B,

B = (B s B s )T

. (16)
ﬁz :<,812 ’,822 vﬁxz s T2)
The final solutions of u and ¢ are
=2RelAf (2) +cg (=)
u e[Af (= cg ()] an

@ =2Re[Bf (») +dg(2)]
And A and B satisfy the following orthogonality

T AT A A 1 0
- = { } (18)
B" A" |B B 0 I

Assuming that the considered problem satis-

relation

fies such a condition that for an arbitrary point on
the boundary, the corresponding points z, and
2,(a=1—4) can be translated into an identical
point, e. g. on the x;-axis or an unit circle, and
as a result the boundary equation can be reduced
to that containing one variable. Only under this
condition, the one-complex-variable approach in-
troduced by Suo'™ can be used to simplify analy-
sis when the boundary conditions are consid-
ered'®*"1, In the present work these one-complex

variable equations can be summarized as

T=2Re[g' ()] (19)
Q :2Re[ilu,/c,g”(z):| 20)
¢ = —2Relir,g" (2)] @20)

Q=2Re[ig’ ()] :%Jql dx, —q.dx; (22)

Consider a generalized 2D problem of a thermopi-
ezoelectric medium containing an circular hole as
shown Fig. 1.

The boundary conditions at the rim of the

hole are
2Re[Bf (2) +dg(2)] :J tds

(%

QOOOOOOOO®

Dl’ 1

D5 ¢50%

Fig. 1 Circular hole in thermopiezoelectric solid
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t=[t st:5t5,D,]" (23) pressed as
PeN — o o L _ oo d—=2a0gr 1 1
3 Temperature Field in Medium g =a?+ LA =r)e + 1 . ¢
34

From Eq. (9), the semi-permeable boundary
conditions of heat flow is

— 2Relik,g” (2) Jsind + ZRe[i#,/c,g”(z) Jecosf =

A1q1cosf + Az gz sind (24)
g’ (2) takes the form of
g () =cPz+ g (2) (25)

where g’y () is a holomorphic function outside
the hole, g’y (c0) =¢®P, ¢V is a constant corre-
sponding to an uniform temperature field and
thus can be neglected without loss in generality,

> is another constant to be determined.

and ¢*
Substituting Eq. (25)into Egs. (20—21) ,and

taking the limiting z—>co yields

2Re[ipm,ci” 1=q7 (26)
2Relik,e? ] =—q5 27
Eqgs. (26—27)give
PR (i 7 (28)
e, Cpe — p)

The following transform functions

2, (0 =R, (g+m, ") @29
1+ip,

where Ra:§(l*i#a), m,

Eq. (29) maps the ellipse in the z,-plane into a
unit circle in the ¢ plane.

Noting that on the hole, {=¢=¢", and

COS@Z%(%JFG) (30)
sin@:%(%—a) (3D

Eq. (24) can be rewriten as

— 2Relikig” ()] é (% — a) +

2Relipm,g” (2)] % (% + 6) =

- 1/1
(A[ l)ql ?(GJFG)JF
il
(/szl)qz 2 (6 O') (32)
Calculating the Cauchy integration leads to
& () = [(1—ag + LA L (g3,
K Mt §

Therefore the final form of g’ (z) can be ex-

The integration of Eq. (34) with respect to =z

gives

g () =Pz 4P — i[(1 —2A2)q, +
K

A=Z26 gR L rg g,y +

M C K
(l*}jl)q}“]% (35)
g(2) :%c‘,@)zz + P — Ki[(l —X0qs +

A=A ey 01— a0 +
Iz i

I .
A=ADG Rom G0
Iz g oz
(1 —2)4q, 1 R*m?
1= (36)
e 4t

4 Electro-Elastic Field in Medium

Observing Eq. (36), the complex potential in

the medium can be expressed as
F :%cmzz + e x4 8lng() + fo ()

(37
where f,(2) is a holomorphic function outside the

> and & are the three constant vectors

hole; ¢® ,c"!
to be found.

The force equilibrium condition and the con-
ditions of single-valued displacement and electric

potential require
§u71d2209 ﬂgq)]dz:() (38)
I I

where I', stands for a clockwise closed-contour
encircling the hole, and
u, =2Re[Af (2) +cg’ ()] (39
0. =2Re[Af () +cg' ()] (40)
Substituting Eq. (37) into Egs. (39 —40), and

then using the residue theorem produces

[AS +cy] —[AS +¢y]=0 (41)
[Bs +dy]—[Bs+dy]=0 (42)
where y= LS [(1—/\2 Dqs +7(17;{1 )qT}.
t M
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Using Eq. (18) and Eqs. (41—42) yields
0=B"(cy —cy) +A"(dy —dy)  (43)
Considering the fact that both the stresses and

strains are bounded at infinity, we have

2Re[Ac” + eV ] =u; (44)
2Re[Be” +dc" ] =g (45)
2Re[ (Ac® H+¢ccP)z]=0 (46)
2Re[ (Bc™® +dc;”)z] =0 47

Using Eq. (18) one obtains from Eqgs. (44 —45)
that
¢ =B'u; +ATp; —B'[el? e’ ]
AT[dc® +defP] (48)
On the other hand, Eqgs. (46 —47)imply that the
complex functions (Ac¢® +cc{” )z and (Be® +
dc”) z, which are corresponding to the uniform
heat flow in an infinite medium without holes,
will not produce stress and strain, and thus can
be cut out in the boundary equations. Therefore @

and u can be rewriten as

@0 = +2Re[ (By +dy)lnt] + 2R{Bf0<z> +
R S
d<m7§ T )} (49)
u—=u" + 2Re[ (A5 + ) Ing] + ZRe[Afo () +

c(m)'§ 2—%7%27{ ')} (50)

where

o =II, v, — I x; , u” =g &, + &

II = (51150155013, D)D) T = — @0

II; = (621402 5025, D) = — @)

g = (ei1 -6 Tws 2255, —E7DT =u)

g = (es —ws senslens —E7 ) =u)
On the hole, we have

0(o) =II,x,(¢) —II x5, (o) + 2Re[ K, (s)] (51)

u(s) =¢7x,(0) +¢&5x,(¢) +2Im |:YK(>(O') —

M(m}’f2 *%mz)’aﬂ) } (52)

where
K, () =Bf,(2) +d<m7§72 — %mz)’é’%)

Y =iAB™', M =Yd — ic
Ignore the electric field within the hole, the

boundary condition is

0(c) =(0,0,0,0)" (53)

Namely
I, x, (6) —II" 7, () + 2Re[ K, (6) ] =(0,0,0,0)"
(54)

One can obtain after calculating the Cauchy inte-

gration that
K()(g):—%(m*—im“)(l (55)
So far, all the field variables can be calculated.

5 Stresses on Hole Rim

The stress components are

011 — Q1.2 O12 — Q1,19 022 — Q2.1 (56)
O —Ju ;Ltm —au QUZZCOSZ(?*mzsinZ& (57)

Consider a transversly isotropic piezoelectric me-
dium cadmium selenide, where the poling direc-
tion is parallel to the X;-axis. The material con-
stants are
1 =74.1X10° N+ m %, ¢;,=45.2X10° N+ m?
¢13=39.3X10° Nem %, ¢;35=83.6X10° N+ m?
cy=13.2X10° Nem ?, e;;=—0.16 C* m *
€33=0.347 Cem™ %, ¢;5=—0.138 C* m™?
€, =82.6X10 2 C? e« N ! em?
€53 =00.3X10 2 C*+« N !'em?
B =0.621X10° N« K ' em’
By =0.551%10° N« K « m*
7;=—2.94X10°C+ K" em*
A=A =10 Wem '« K", A;s=1.5A,

If our attention is focused on the field in X, -
X, plane, the out-of plane displacement does not
couple with the in-plane displacements and the
electric potential, and the elastic matrices S, R

and W degenerate into the 3 X3 ones

1 0 0 0 ¢35 ey
S=10 ¢y e; R = |cy 0 0
0 e5 —en e O 0

Ciy 0 0

"
W=10 ¢z €33
0  es3 —ess
and =R, 0, O, B.=(0, Bys» 7).
Based on the given constants, we have
i =1.826 7Ti  p —0.830 3i
s =0.594 1i g, =0. 816

and
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[3.199 2 X 10°°(1 —1)
A= [1.084 3 X10°(1+1
| 1.438 8 X 10" (1 +1)
[ 8.946 6 X 10" (14 1)
B= |4.987 8 X 10" (— 141
11,174 0 X 10°°(1 — 1)

Fig. 2 shows the normalized hoop stress on

the rim of hole A, aw/l(),@n versus orientation 6
with different value of A, at g7 =1 W e m ?, r=
107" m, A, =0. It is seen that As0, /108, reaches
its maximum when 0 =0 and wn. The value of
2220, /1081 equals to zero when §=m/2 or §=3x/
2. The hoop stress 2::0,,/1081; decreases with the
increasement of the thermal conduction coeffi-
cient, which means if the heat flow may pass
through the hole easily, the hoop stress around
the hole will be low. On the contrary, the gather-

ing heat flow enhances the hoop stress.

Fig. 3 shows the normalized hoop stress on

150 |
100 |

Azzo'w/ IOﬂ"
o

._50 L
-100 |
-150 |
0 1 2 3 4 5 6
0 /rad
Fig.2  Curves for normalized hoop stress Az 0, /1081
versus orientation @ at ¢i =1 W « m *, r=
107" m, A, =0
100 - A=0.7

0 /rad
Fig.3 Curves for normalized hoop stress Az o, /1081
versus orientation @ at ¢ =1 W « m *, r=
107" m, A, =0

1.595 3 X 107°(— 141
2.052 8 X 107°(—1—1
5.744 6 X 10" (1 +1D
5.250 8 X 10" (—1—1)
6.324 1 X 10" (1 —1
5.153 6 X 107°(1 —1)

1.773 6 X 10 °(—1—1
3.8023X107°(1 —1)

2.571 8 X 10" (—1+1

6.764 9 X 10" (1 —1)

1.138 6 X 10° (1 4+ 1)

2.447 5 X 10°°(1 41D
the rim of hole 1,,0,,/108;, versus orientation @
with different value of A, at g7 =1 W e m ?*, r=
107" m, A, =0. It is seen that the value of X0,/
10B11 equals to zero when §=0 and §==. At =
1,2.4,4. 14 and 5. 54, |g, | reaches its maxi-
mum. When 0==/2 and 0=3n/2, |o, | reaches

its second largest value.

6 Heat Flow on Hole Rim

From Egs. (20—21) we have
g1 =2Relipsx,g" ()]s g, =2Relik,g" ()] (58)
q. =q,cos — q;sinf, g, = q,sinf + q,cosf (59)
Fig. 4 shows the normal component of heat
flow g, versus orientation § with different value of
Aatgr =q¢; =1 Wem?, r=10 "' m, ,,=1. It
is seen that A, has a significant influence on gq,.
The orientation @ increases with the increasement
of A, when ¢, reaches its maximum, but when =

0 or =m, q, and A, are independent.

0/ rad

Fig. 4 Curves for heat flow ¢, versus orientation § with
different value of A, at ¢ =¢5 =1 W « m 2,
r=10 "m, ,, =1

The curves for variations of heat flow ¢, ver-
sus orientation § with different value of A, are
shown in Fig. 5 for the case of ¢; =¢; =1 W -
m~?, r=10"" m and A, =1. The orientation § de-
creases with the increasement of A, when ¢, rea-

ches its maximum, but when §=x/2 or §=3x/2,
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1.0
A=1

051

/’LIZO6 11= 0.8 /

= 0.0 A\ /
-05t
-1.0

0 1 2 3 4 5 6
6 /rad

Fig.5 Curves for heat flow g, versus orientation ¢ with
different value of A, at ¢i" =¢; =1 W » m %,

r=10""m, 1, =1

q. and A, are independent.

The curves for variations of heat flow ¢, ver-
sus orientation @ with different value of A, are
shown in Fig. 6 for the case of ¢ =¢5 =1 W
m ?and r=10 * m and A, =1. It is seen that A,
has a significant influence on ¢g,. The orientation @
decreases with the increasement of A; when g, rea-
ches its maximum, but when §=x/2 or 6=3x/2,

q. and 2, are independent.

0 /rad

Fig. 6 Curves for heat flow ¢, versus orientation § with
2

different value of A, at ¢ =¢> =1 W ¢« m ?*,
r=10 ! m, /\1:1

Fig. 7 shows the tangential component of
heat flow ¢, versus orientation § with different
value of A, at ¢7 =¢; =1 W em ?, r=10 "' m
and A, =1. It is seen that |q,| decreases with the
increasement of ;. And the orientation § increa-
ses with the increasement of A, when ¢, reaches its
maximum, but when §=0 or ==, ¢, and A, are

independent.

0/rad

Fig. 7 Curves for heat flow ¢, versus orientation § with
2

different value of A, at ¢/ =¢5 =1 W « m 7,
}’:1071 m, /lgzl

7 Conclusions

(1) The thermal boundary condition has sig-
nificant effect influence on the hoop stress and
heat flow around a hole in thermopiezoelectric
materials under a thermal loading.

(2) The hoop stress decreases dramatically
with the increasement of the thermal conduction
coefficient, which means if the heat flow may
pass through the hole easily, the hoop stress a-
round the hole will be low. On the contrary, the
gathering heat flow enhances the hoop stress.

(3) The orientation § when ¢, (or ¢,) rea-
ches its maximum changes with the variation of
the thermal conduction coefficient A, Cand A, ).
But at certain points, g, (or g.) and A; (and A,)

are independent.
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