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Abstract: The thermal expansion strain is considered as a special case of eigenstrain. The authors proved the theo-
rem on decomposition of eigenstrain existing in a body into two constituents: Impotent eigenstrain (not causing
stress in any point of a body) and nilpotent eigenstrain (not causing strain in any point of a body). According to
this theorem, the thermal stress can be easily found through the nilpotent eigenstrain. If the eigenstrain is an im-
potent one, the thermal stress vanishes. In this case, the eigenstrain must be compatible. The authors suggest a
new approach to measure of eigenstrain incompatibility and hence to estimate of thermal stresses.
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1 Introduction

According to Reissner, 193177, any tensor
of geometrically linear strain existing in a body
can be presented as a sum of elastic strain (which
can be found according to Hooke's law) and ten-
sor of eigenstrain. Examples of eigenstrain are:
Thermal expansion strain, plastic strain, creep
strain, strain due to phase transformations, and
growth strain in living tissues, etc.

Therefore, we have

e=e" te',

;<u>=%<v utuv)

e=C'eeg @))
where total strain tensor e is related to the dis-
placement u and elastic strain tensor ¢° is linearly

related to the stress tensor ¢ by Hooke's law with
C ! denoting the elastic compliance tensor.
2  Generalized Formulation of Basic

Boundary Value Problem in Line-

arized Elasticity with Eigenstrain

Stress is given by the generalized Hooke's

law (eliminating elastic strain in Eq. (1))
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o=Cee (cu) —¢") (2)
whereu € (W, (2))*, u=0, x€I',, and the
work of internal and external forces must vanish,

namely

J& --é(w)dV—J - wdS—J b« wdV =0
n n

r

c

Ywe W; (@2, w=0,xeTl', (3
where £ is a bounded region with boundary (as-
sumed to be sufficiently smooth) I'. The bounda-
ry I' is divided into disjoint parts: ' =I,UTI,.
Kinematical boundary conditions are set at the
part I', of the boundary and the traction vector ¢t
is prescribed at the part I',

u=0,xer, €]

ueog=t, xer, (5)

Further, W} is the Sobolev space of functions
with generalized derivatives, and the functions
and their derivatives are squared summable.
Strains e(u) and e (v) are defined by linearized ge-
ometrical relations where generalized derivatives
are understood. Values of displacements u and v
at the boundary are calculated by means of the
trace Also, we suppose: t €&
(L,(I',)* b€ (L, (2N, e € (L, (2)N°,

Ciu(isj.ksl=1,2,3) are pilecewise continuous

operator.
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functions of coordinates.

The generalized solution has an analogous
sense with principle of virtual displacement and
does not contain the derivatives of stress and
strain with respect to coordinates. It can be easily
shown that classical solution is a generalized one,
and in the case of adequate smoothness of the
stress o, the generalized solution is a classical
one.

Existence and uniqueness of the rewritten
generalized solution of the problem have been

shown by Duvant and Lions™.

3 Impotent and Nilpotent Eigen-

strains

The fundamental definitions of impotent and
nilpotent eigenstrains are given in this section.
Impotent eigenstrain e, ) does not cause
stress in any point of the body. Consequently,
impotent eigenstrain is equal to total strain,
namely
e=¢. (6)
Nilpotent eigenstrain e, ' does not cause de-

formation in any point of the body, i. e.

e=e¢"+e =C'eegte =0 )

&g =—Clees (8)
In the absence of both volume force b and
surface traction ¢, the classical formulation of the
problems for impotent and nilpotent eigenstrains
have forms:
(1) For impotent eigenstrain e;
o=0,x€Q=0UT
el =¢/ , XEQ

o (9
612?(V u1+u1 V),XG.Q
u, :0’ X 6 Fu
(2) For nilpotent eigenstrain e,
\V4 '(;2209 x €N
&2:_6..g;’x€(2 (10)

co, =0, x €T,
uzzo,ggzoaxéﬂ

S

4 Function Space of Eigenstrain

Let us consider the set H of symmetric ten-

sors of the second rank. The components of the
tensors are assumed to be real functions of the
spatial coordinates and belong to the function
space L,.

The scalar product satisfying symmetry, lin-

earity and positivity in space H is defined by
(Z, /B) :J A;jC,jk,Bk,dV (11)
0

The norm in space H is defined by means of the

scalar product

| A=+ (A, &) 12

This space is a Hilbert space, or energy space™™.

Subspace H, is introduced by the following
definition that a symmetric tensor f€ H belongs
to subspace H, if there exists such vector-

function Jue Wi (Q))*, u=0, x€I',, and
J=4(Vutuv) (13)

The physical sense of subspace H, lies in the
fact that this subspace is a set of compatible ten-
sors of strain when the corresponding displace-
ment u is equal to zero at the immovable sup-
ports.

It can be proved that condition e* € H, is a
necessary and sufficient one for ¢ = 0 in every
point of a body due to action of eigenstrain. In
particular, it is true for thermal strain and stress.

Further, we will prove this assertion. If 6=

0, then from Eq. (2) it is follows that e (w) —¢* =

~
~

C ' ++5=0. Hence., e" =e(u) € H,.
To the contrary, let e € H,. In this case,
we have 6=C e+ (Vu+u V)=C ++ Vz. where u
is the real displacement, and displacement v cor-
responds to eigenstraine” , z=u—v.
From Eq. (3), it follows at b=0 and t=0
that
J Ceoe VizoeoVwdV=0
0
Ywe (Wi (), w=0, x € T,
Let w=z, then we have

Jéqu--Vde:O
9]

Due to positive definiteness of matrix Cyy »

we can derive that z=0 almost everywhere. As a
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result, 6=0.

Therefore, condition e* € H, is necessary
and sufficient one for the eigenstrain to be impo-
tent.

It was shown'® that a strain e is a compatible
one (¢ € H,), if and only if there exist such a
(fictitious) body force b& (L*(2))*, x€ 2, and
surface traction t€ (L*(I",))*, x&€ T ,, that pro-
duce in the elastic body a deformation with load
strains equal to this eigenstrain without producing
additional stresst.

Another subspace H, is introduced under fol-
lowing condition: All elements of this subspace
are nilpotent eigenstrains e, .

For the generalized solution (Egs. (2,3)),

we have for element ¢, € H,

J.&--é(w)dV:o
0

Ywe (Wi )»*, w=0, xeI, (14
where (}:*é ceg”
5 Theorem on Decomposition of
Eigenstrain

This theorem represents a general property
of any eigenstrain tensor.

Theorem 1 Any tensor of eigenstraine” € H
can be decomposed uniquely into two orthogonal
parts: Impotent and nilpotent constituents,
namely

e=e te; (15)
where e € H, and e; € H,.
Therefore, subspaces H, and H, are mutual-

ly orthogonal (Fig. 1).

H,
& H
&
& H
0 P(ELH)
H, &

Fig. 1  Illustration to decomposition of eigenstrain in
space H and orthogonality of subspaces H, and

H,

This theorem can be deduced from the theo-
rem on orthogonal decomposition of Hilbert space
HY ™,

In this text, we prove that the decomposition
is unique. To the contrary, we assume that de-
composition Eq. (15) is not unique. Hence, we
have another decomposition
g% :;)f + 7;2*
where v, € H,, v; € H,.

Then

G =

*

* * %
€1 T Uy —7Uy; — &2

Further, we introduce new designations
gf *;ff :’:Uf € H,, {12‘ *gzx :71'; € H,
As a result

The boundary value problems (Egs. (9,10))
indicate at once that the sole element which would
belong to both subspaces H, and H, must be the
zero element.,

Therefore

wi =w; =0, ¢ =v e =05

and the decomposition in Eq. (15) turns to be
unique.

As a consequence, the subspaces H, and H,
must be mutual orthogonal, i. e. any arbitrary
tensor elements e; € H, and e; € H, are orthogo-

nal. Their scalar product is defined by

(ef ,;;):J e +eCooes dV =
0

—Jé(u)--&dV=O
[0}

It vanishes since the eigenstrains e’ and e,
satisfy Eqgs. (8,9) or Eq. (3) in the absence of ex-
ternal force (b=0, t=0). It is known that two
subspaces H, and H, in H are mutually orthogo-
nal if any e; € H, is orthogonal to any element of
H,.

It can be concluded that there exists the or-
thogonal decomposition of the Hilbert space H in
to subspaces H, and H,(H=H,@® H,). Conse-
quently, the theorem on decomposition can be re-
formulated in another form.

Theorem 2 Subspaces H, and H, are mutu-

ally orthogonal subspaces of Hilbert space H
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(H=H,®H,) and any elemente” € H, can be u-
niquely represented in the form of Eq. (15).

The orthogonality of the two subspaces al-
lows us to prove the uniqueness of the decomposi-
tion in Eq. (15) by the other way. The scalar
product (w; » w; ) vanishes.

Therefore, from "LNUIX' :Jj{ , we can obtain

(wi »ws ) =(w ,wi ) =0=>
wi P =0=>w, =w; =0
and consequently the decomposition in Eq. (15) is
unique.

Specifically, thermal strain can be decom-
posed in a unique way into impotent and nilpotent
constituents. It is a novel result in linear ther-
moelasticity.

Decomposition of thermal strain opens the
practically important opportunity to fully separate
the control of strain and stress produced by force
loading.

Two corollaries of practical importance are
proven subsequently.

Corollary 1

Let 6" (x) be a statically admissible stress
tensor. It satisfies Eq. (3) with b=0 and t=0. A
tensor f is defined by

f=e¢ +C'ees
The condition f & H, is necessary and sufficient
one in that stress ¢ (x) is equal to its prescribed
value ¢° (x) in the region Q.

Proof of necessity

Let 6(x) =¢" (x). Take notice that (—E‘*l
«e g)=¢, € H, in view of the fact that ¢° is stati-
cally admissible and thus it equals the nilpotent
part of ¢, therefore f€ H,.

Proof of sufficiency

Let f & H, according to the decomposition

theorem, and the tensor (—C ! «+ ) € H, is the

nilpotent part of e¢”. Since decomposition is

unique, we have

~
~

~
1 - 1 o

C! e CcC
o= L

—C"es (66" =0

~

From positive definiteness of the tensor C ',

it is concluded that 6 —¢° =0, or 6 =¢". Hence,
the proof of Corollary 1 is completed. In particu-
lar, the condition ¢* € H, is necessary and suffi-

0 —

cient one for obtaining the stress-free state (o
0).

Corollary 2

This corollary is analogous to Corollary 1 ex-
cept of non-vanishing external loads, b 0 and
t0. In this case, due to linearity of the general-
ized solution with respect to tensors ¢ and e, we
can represent the solution in the form

o=c"+o's e=e te (16)
where 6" and e' are tensors of stress and strain
due to imposed volume forces b and surface trac-
tion t, ¢° and ¢ are tensors of stress and strain
due to eigenstrain., Therefore, Corollary 1 is valid
for this case when (5" —¢") and (¢“—&") are sub-
stituted for ¢° and &°.

Thus, Corollaries 1 and 2 provide the neces-
sary and sufficient conditions for obtaining a pre-
scribed stress state by means of imposed eigen-
strain (in particular, thermal strain).

The introduction of subspace H, transfers
the classical conditions of strain compatibility to
the membership of an element of space H in the
subspace H,. It is very important that measure of
strain incompatibility can be defined (note that
the total strain tensor is always compatible
whereas its constituents can be incompatible).
Furthermore, it is significant that the classical
equations of compatibility demand the existence
of the second spatial derivatives of components of
the strain tensor. In the above definition, this
condition is not imposed. The measure of tensor
incompatibility can be introduced as a distance
p(gx ,H,) of given tensor to subspace H,. This
measure can be found through the basis in sub-
space H,(or subspace H,).

It is possible to prove that distance p(;: “VH,)
is related to level of thermal stresses in a body'™.
For this aim, it is useful to introduce the objec-
tive function of the problem obtaining given

eigenstress (in particular, thermal stress) [5”.
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g=p" —ph :J (0" —p) s Clee (0" —)dV —
0
—inf(e, ) an

el p=—C

1

where [5: —C

1 "5;-
o

Eq. (17) can be written in another form
p=| G =)o —epav A
0

The examples of application of proposed ap-
proach to control of eigenstress and eigenstrain

are discussed in another presentation.
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