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Abstract: An efficient wavelet-based finite-difference time-domain (FDTD) method is implemented for analyzing
nanoscale optical devices, especially optical resonator. Because of its highly linear numerical dispersion properties
the high-spatial-order FDTD achieves significant reduction in the number of cells, i. e. used memory, while analy-
zing a high-index dielectric ring resonator working as an add/drop multiplexer. The main novelty is that the wave-
let-based FDTD model is extended in a parallel computation environment to solve physical problems with large di-
mensions. To demonstrate the efficiency of the parallelized FDTD model, a mirrored cavity is analyzed. The analy-
sis shows that the proposed model reduces computation time and memory cost, and the parallel computation result
matches the theoretical model.
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1 Introduction

The optical devices in modern optical com-
munication systems tend to be miniaturized,
while many light-processing functions are inte-
grated within a small chip area. Normally, these
optical devices are high-index structures, e. g. sil-
icon optical devices, which have a large refractive
index variation within the circuit layout. As a re-
sult, the physical dimensions of these optical de-
vices are comparable with the wavelength of the
optical signals. Therefore, full-vector solutions
are desired in order to obtain an accurate solu-
tion.

The finite-difference time-domain (FDTD)
method®, which solves time-dependent Max-
well's curl equations numerically, has been proved
to be a highly efficient technique for numerous
applications in electromagnetics. Since the meth-

od makes very few assumptions and includes the
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total field in its simulation, both the reflected
field and the forward propagation field are part of
the solution.

Despite of the simplicity of the FDTD meth-
od, this technique suffers serious limitations in
case that substantial computer resource is re-
quired to solve electromagnetic problems with
medium or large computational dimensions. Es-
pecially, analysis of optical waveguide with a 3D
FDTD method is often computationally too large.
This is because the FDTD method requires a dis-
cretization of a twentieth of the target wavelength
for accurate computations. This situation be-
comes even worse in a longer waveguide, which
requires a finer discretization due to the cumula-
tive numerical dispersion error of the FDTD
method. However, the available memory hinders
such a 3D analysis in most optical waveguides.

Recently, it has been shown in many re-
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search fields that the wavelets theory is a very ef-
ficient algorithm to solve differential equations
numerically™. In Refs. [5—7], a high-order fi-
nite-difference scheme has been developed, which
is based on Daubechies compactly supported or-
thogonal wavelets'™ and Deslauriers-Dubuc inter-

B as biorthogonal wavelet ba-

polating functions
ses. This modified time-domain scheme shows
highly linear dispersion characteristics and brings
significant reductions of the memory usage.
Thus, other continuing works have been preceded
to improve the efficiency of this wavelet colloca-
tion method, e. g. by introducing structured non-
orthogonal discretization grids into such meth-
ods"'™ or by adapting the computational grid at

0 However, because a finer res-

each time step
olution is required for investigating and designing
nanoscale optical devices, e. g. silicon or plas-
monic optical devices, this wavelet-based FDTD
method still suffers a huge memory demand.

The new contribution of this work is that the
wavelet-based FDTD method from Refs. [5—7]
has been extended on a parallel-computational
IBM cluster to further improve the computation
efficiency. Before parallelizing the wavelet-based
FDTD method, this method is implemented, i. e.
programmed on a stand-alone computer, to verify
the highly linear dispersion characteristics of this
method. In Section 2, it shows that this method
requires less memory, while a same accuracy is
kept as that by using the standard FDTD method.
In Section 3, the parallelization of the wavelet-
based FDTD method is realized on the IBM clus-
ter. To calculate an optical device, the wavelet-
based FDTD method uses several processors
which operate in parallel on different parts of the
calculation space and exchange information on the
boundaries. To handle the parallel computation
and the data exchange, the message passing inter-
face (MPI) software package is used to create a
program easily portable to the cluster. The simu-
lation results show not only a memory-saving but
also a time-saving in calculation by using the
wavelet-based FDTD method and parallel-compu-

ting in the MPI environment.

2 Electromagnetic Field Analysis
with Wavelet-Based FDTD

The wavelet-based FDTD method is used to
calculate the propagation of an electromagnetic
field. For optical devices are of few hundred nan-
ometer scale, it is still valid to deploy a classical
description of the electromagnetic properties of
matter, i. e. neglect quantum mechanical phe-
nomena. These properties of electromagnetic
fields are governed by the Maxwell equations.
The FDTD method solves Maxwell's curl equa-
tions directly. It means that the update equations
are derived directly from the curl equations and
yield solutions for the electric field E and the
magnetic field H at certain points in time and

space,

Naturally, space and time must be dis-
cretized to enable a computational treatment.
Following Ref. [1], a space grid point is denoted
by integers 7, j and k, i.e. (i,j.k) = (iAx,
JAy,kAZ) s Ax, Ay and Az are the space incre-
ments. The time step is At and the nth time step
is nAt. Thus, a function of space and time can be
denoted as F(iAx,jAy.kAz,nAt) =F(i,j.k,n).
For almost all numerical techniques, the proper
choice of the sampling width plays a crucial role
in the performance of the algorithm. For FDTD
algorithms the sampling space is determined by
the highest near-field spatial frequency of inter-
est. Typically, a sampling rate in space is needed
to be below A/20. The choice of the sampling rate
in time is restricted by the sampling in space to
ensure stabilityt.

The wavelet-based FDTD method is to solve
the time-dependent Maxwell’ s curl equations by
using the wavelet-collocation formulation. The
developed in

Refs. [5—7] uses Deslauriers-Dubuc (DD) inter-
[9]

wavelet-collocation formulation

polating functions*” as the basis functions, which
form the compactly supported biorthogonal wave-
let bases. The associated basis functions are de-
noted as DD2, DD4 and DDI10 for respective in-

gLl

terpolating orders-*’. Because of the interpolation

property of this family of wavelets, their expan-
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sion coefficients can represent field values direct-

ly. A short review of the formulation” is given
in Appendix A.

The numerical formulation given in Appen-
dix A is implemented, i. e. programmed to ana-
lyze electromagnetic fields in optical devices. The
optical device analyzed first is a 3D optical ring re-
sonator, as shown in Fig. 1. The different areas
are for the actual calculation region, the perfectly
matched layers (PML)M? | the perfectly conduc-
ting layers (PCL), respectively. Note that this
optical device has the same dimensions as those in
Ref. [13], because we want to establish a wave-
let-FDTD model firstly and prove it. The struc-
ture parameters of this ring resonator are given
briefly as follows. The waveguide layer has a
height of 0. 405 pm, while the bottom substrate
layer and the upper air layer are 1.5 times higher
than the waveguide. The refractive indices of the
waveguide and the substrate are 3. 03 and 1. 67,
respectively. The radius and width of the ring are
2.25 pm and 0. 5 pm, respectively, while the
straight waveguide is 0. 55 pum wide. The gaps

between the straight and the ring waveguides are

7.1 pm
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Fig. 1 3D optical ring resonator'*!

chosen to be 0. 2 um. In total, the size of the
problem is 8. 3 um in length, 7.1 pm in width
and 1. 62 pm in height. An absorbing boundary
condition (ABC) with five anisotropic perfectly
matched layers (APML) is applied to terminate
the computation region. This promises a less than
—50 dB reflection as depicted in Ref. [14]. The
field-launching and monitoring ports are also de-
picted in Fig. 1. They are located in the straight
waveguides and have the same height and width
as those of the straight waveguide.

The evolution of electromagnetic fields in
this structure is simulated. First of all, the
steady-state propagation mode for the initial exci-
tation is needed. Such a mode is calculated in a
Fabry-Perot straight waveguide, each end of
which is truncated by a perfect electric wall. The
waveguide structure of this resonator has the
same cross section as the straight one in Fig. 1
(b) . while the waveguide length is chosen to en-
sure a half-sine longitudinal distribution at the
resonance frequency within the frequency range of
interest, from 130 THz to 200 THz. Into this
waveguide resonator, a field with a Gaussian
transversal distribution and a half-sine longitudi-
nal distribution is launched, see Fig. 2(a). The
dominant propagation mode is then obtained as
the field evolves in the time domain, Fig. 2(b).
This propagation mode is indeed the eigen-mode
of this resonator structure. The obtained eigen-
mode field is successively used as an excitation
template for simulating the pulse propagation.

After the excitation field is introduced to the
launch port 1, seen in Fig. 1, the evolution of
electromagnetic fields in this structure is simula-
ted. The evolution time duration is set to be
600 fs, the targeted center frequency to be
150 THz and the polarization component to be E,
Calculated by
using the DD4 basis function with a discretization
A=0.05 um (DD4, 0.05) for all three space di-

rections, the E,-field evolutions on the y-normal

resulting in a TM polarization.

plane at the half-height of the waveguide are
shown in Fig. 3, where the observation time is

10 fs and 140 fs after the excitation signal is
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Fig. 2 Steady-state initial excitation and resonant signal

launched into structure.

The transmission S-parameter (S21) and the
coupling S-parameter (S31), which describe how
much the excitation field at the launch port 1 is
coupled to the monitor port 2 and 3, are extracted
by means of a discrete Fourier transform of the
FDTD time series data of each port and depicted
in Fig. 4. To check the accuracy of the model, the
transmission S-parameter (S21) and the coupling
S-parameter (S31) are compared between the
DD4 and the standard FDTD by choosing differ-
ent Deslauriers-Dubuc interpolating basis func-
tions, as explained in Appendix A. The choice of
the DD4 basis functions is based on the demon-
stration®” that using the standard FDTD basis
functions with a space discretization (0. 025 pm)
still gives a higher numerical error than using the
DD4 basis functions with a doubled space discreti-
zation (0. 05 pm).

The feasibility and accuracy of our model are

proved by the results shown in Fig. 4 (a), which
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(b) E-field on y-normal plane after 140 fs
Fig.3 Field evolution of TM-polarized E, component

on y-normal plane at half-height of waveguide

are very similar to those results shown in Ref.
[137]. It can be seen in the DD4 time evolution,
Fig. 4(b), that the resonant frequency at the port
3 is 154. 24 THz, which is found with a reasona-
ble frequency resolution of 0. 032 THz for the dis-
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crete Fourier transform. This finest frequency
resolution is restricted by the frequency error in
this scheme, which is 0. 016% around 200 THz,
yielding 0. 032 THz. In the case of the standard
FDTD time evolution, the resonant frequency is
153. 92 THz using a frequency resolution of
0.36 THz, which is restricted by the frequency
error in this scheme. These results are very simi-
lar to the results in Ref. [13], where the calculat-
ed resonant frequency is about 153. 75 THz. The
next resonant frequency calculated in our model is
159. 64 THz, which is also matching those from
the most recent reference'™, where a three-
dimensional full vectorial finite-element method
was used to simulate the same structure in Fig. 1.

This comparison shows that our model works

fine.
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shown in Fig. 1 for TM-polarized field

The required computational resources needed

for the above two computation methods are com-

pared and listed in Table 1. These computations
are performed on a windows-PC with an AMD
Athlon(TM) processor (a single core clock of 2. 3
GHz) and a 3 GB memory. The numbers in Ta-
ble 1 emphasize the stated major drawback of all
FDTD-based computational methods. Even a
rather small structure with a coarse discretization
mesh needs a fair amount of CPU time and mem-
ory. E. g. . by choosing the DD4 method with a
space discretization of 0. 05 ym, the computation
takes about 28. 9 h and occupies 122 MB memo-
ry. This problem gets even worse if a finer reso-
lution is required, e. g. for the DD4 method with
a discretization of 0. 025 ym in Table 1. In this
case, not only the number of the grid points in-
creases by a factor of eight, but also the number
of the time steps also increases. Therefore, the
required memory increases in a cubic manner, and
the CPU-time increases with fourth order for a fi-
ner gridding. It is evident that a larger problem
space is not solvable in a reasonable time for
stand-alone computers using these FDTD-based
methods.

Table 1 Required computational resources used for analy-

zing structure shown in Fig. 1

Scheme DD4 FDTD DD4
Discretization A/ 0.05 0.025 0.025
[lm
324 X 68X 628 X116 X 648 X136 X
Nbr. of cell 9264 508 598
Nbr. of time 4y 57 12 665 37 232
step
Memory used/MB  122.0 600. 5 600. 5
CPU time/h 28.9 31.5 99.0

3 Parallel-Computing Wavelet-Based
FDTD Technique

The extensive memory and time consumption
of FDTD algorithms limit their scope of applica-
tion. These two problems can both be tackled by
This

means implementing the wavelet-based FDTD

employing a parallel working algorithmM®,

technique on a parallel-computing machine. The
used parallel machine locates at the computer cen-
ter of the Karlsruhe Institute of Technology,
where an IBM RS/6000 SP_ SMP is equipped.
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The SMP machine consists of 256 processors.
Each processor has a clock rate of 375 MHz and a
memory of 1 GB. The software solution for es-
tablishing the communication in the distributed
memory systems is the message passing interface
(MPD) standard™"™.

The basic idea of the parallelization is com-
puting different parts of a task simultaneously.
That means a splitting of the calculation region in
a number of subregions, which can be treated
separately from each other and can therefore be
processed in a parallel way. In the parallelization,
the shape and size of the partitions of the calcula-
tion region are crucial parameters influencing the
efficiency of the algorithm. As we use a Cartesian
grid and all of our calculation regions are cuboids,
cubical partitions are a straightforward solution.
Moreover, most of the integrated electro-optical
devices of interest are "flat”, i. e. at least one spa-
tial extension is considerably smaller than the
other two. Thus, we implements a two-dimen-
sional distribution of the subregions, seen in

Fig. 5.

Fig. 5 Splitting of calculation area in Fig. 1 into differ-

ent subregions

Fig. 5 depicts how the calculation region of a
ring-resonator structure is split into 42 subre-
gions. It can be seen that these subregions are
differently sized. This is due to the consideration
that the neighboring grid-points of one subregion
have to be updated using other grid-points in their
own grid circumference. As this goes on, an ever
bigger part of the calculation region has to be
This situation can be ex-

taken into account.

plained via Fig. 6.

Process n

Process n+1

PML
. B a
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.

-

Fig. 6 Creating of calculation space of three processors

Fig. 6 shows how to create the calculation
space for three processors, while different areas
are for the actual calculation region, the PML,
the PCL and the exchange area in subregions, re-
spectively. By considering the extra exchange
area, all subregions have a same total calculation
region.

The parallelized wavelet-based FDTD meth-
od needs to be verified. The best way to verify
the proper function of the numerical algorithm is
to consider a structure with analytically accessible
solutions of the governing physical equations.
One of these simple structures is a metallic box
filled with a homogeneous medium (e. g. air). It
works as a resonator and the field energy should
go into a set of modes which represent standing
waves inside the box. The resonant frequencies
that characterize the standing waves depend on

the size of the box and are

(@Y

where L., L, and L. denote the spatial exten-
sions of the box in x, y and z directions respec-
tively. The integer values k, [ and m stand for
mode's order; at least two of them must be non-
zero.

To demonstrate the efficiency of the paralle-
lization, a box with dimension of 1. 026 5 pm X
0.923 9 pmX1.385 7 pm is chosen, and the pro-
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gram is ran with 1, 4, 9, 12, and 16 processors.
It should be noted that the number of allocated
processors is up to 16. This is the maximum
number allowed by the administration, because
other users are sharing the parallel computer. To
compare the simulation results with the theoreti-
cal values, the field data at different grid points
inside the box is collected and the power spectrum
is calculated, e. g. for the E,-component ( fy,)
shown in Fig. 7. The values of the obtained reso-
nant frequencies are summarized in Table 2. It
can be seen that these results match the theoreti-
cal values. There is also a small deviation be-
tween theoretical and simulated values. One rea-
son for the small deviation lies in that the size of
the calculation region differs slightly for different
numbers of processors. That is because we have
to use an integer number of cells in each direc-

tion.

P 1 processor
e 4 proc
_— 9 processors

/12 processors
i\ 16 processors
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Fig. 7 Resonant frequencies of E,-component ( fo;)
for different processor numbers allocated in

parallel computation

Table 2 Resonant frequencies in rectangular cavity when the

number of processors varies from 1 to 16

foll/THZ flol/THZ flm,/THZ

Frequency mode

Theoretical value 195.13 181. 85 218. 44

1 processor 194.52 179. 08 219. 22
4 processors 194. 52 179. 08 219. 22
9 processors 195. 97 180. 66 217. 4
12 processors 195. 05 179.93 217.73
16 processors 195. 19 179. 94 219.59

The way to demonstrate the efficiency of the

parallelization is the speed-up achieved with an in-

creasing number of processors. As the program is
run with 1, 4, 9, 12, and 16 processors, the run-
times is recorded and compared in Fig. 8. It can
be seen that the gain of time-saving by applying
the parallel computation in this problem is already
a factor of 10. 3 for an allocation of 16 processors,
and the occupied memory in each processor is also
much decreased in proportion with the increase of
the total processor number. This result proves
that this parallelized program is promising to

solve physical problems with large dimensions.

4»
3.
=
g2
)
A
U 1»
% 10 20

Number of allocated processor

Fig. 8 Comparison of CPU time in one processor for

different processor-allocations

4 Conclusions

A high-order wavelet-based FDTD scheme
has been implemented to analyze optical devices in
a 3D case. The high-order schemes have a better
linear numerical dispersion than that of the stand-
ard FDTD method, thus allowing coarser space
discretization. This leads to a significant reduc-
tion of the required memory. Beyond that, to
gain a reduction in the computation time, the
wavelet-based FDTD method is parallelized in the
MPI environment. A computation result for a
metallic box by implementing the parallelized
model shows a factor of 10. 3 for an allocation of
16 processors. The parallel-computing model is
promising to analyze more complicated optical de-
vices with large dimensions.

The most important criterion for the calcula-
tion efficiency in the parallel computation envi-

ronment is how good the load sharing works. If
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there is a strong mismatch between the workload
of the different processors, the run time of the
slowest machine limits the speed. Therefore, it is
worth having a similar load sharing between dif-
ferent processors.

Besides, the efficiency of this model can be
further improved by implementing a multi-grid
technique in the FDTD algorithm. Via a multi-
grid technique, the staircase numerical error can
be mitigated as other thoughts, e. g. a finite ele-

ment method™™.
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Appendix A: Wavelet-based FDTD method

The wavelet-based FDTD method developed in Refs.
[5-7] uses the Deslauriers-Dubuc (DD) interpolating func-

tions-

as the basis functions, which form the compactly
supported biorthogonal wavelet bases. The DD interpola-
ting function ¢(x) is, indeed, an autocorrelation function

of the Daubechies scaling function g ()t

() :Jf 0 (W (u— 2)du (A.D

The shifted and contracted scaling function gives the associ-
ated wavelet function ¢(x)

P(x) = ¢2x—1) (A.2)
The scaling function ¢(x) satisfies the so-called dilation re-

lation"®

-
$(x) = D) AP 2a— k) (A.3)
et
DD

where AP is the filter coefficients™ , and k=1,2,--, p—
1. The coefficients hy* for p=2,4,10 can be found in Ref.
[7]. The associated basis functions are denoted as DD2,
DD4 and DD10 for respective p. For p=1, namely DDI, it
turns out to be the standard FDTD.

As given in Ref. [5], the time-dependent electromag-
netic field is modeled through the wavelet-Galerkin proce-
dure. The Galerkin's procedure proceeds as follows!'*) ;

(1) The expanded field variables are substituted into
Maxwell's equations.

(2) The equations are then tested with the dual basis
functions, where ”test” means the inner product between

the expanded field variables and the dual basis™®71,

(3) At last, the biorthogonality condition (4, »¥q>:
Omg s for mor ¢g=0,1,--,p—1, is applied.
The scaling functions ¢(z) in Eq. (A. 1) in space and

L9 5 (1) in time are used to ex-

the Haar scaling functions
pand the electromagnetic fields. E. g., the component F,

(either E, or H,) is expanded as

F.(x.y.z.t) =

oo
D Fiamgumr i ()¢ (30 g (Dhyrn (1) (AL

ijikoan=

where h, (1) = h <L

At
of F, in the left side of Eq. (A. 4) is moved to the super-

—n+ %) . Note that the subscript x

script position in the right side of Eq. (A. 4).

By applying the biorthogonality condition. the time e-
volution equations similar to the multi-resolution time-do-
main (MRTD) method"® are obtained. In a medium with
a permittivity e, a permeability 4, and a conductivity ¢ in

presence of a current density J, the components E, and H,

evolve ast”
2e — oAl 2t
Efjeme = 51T < Efejemre ¥ 5
+1/20j ka1 26 L oar TV/Eik 9et oAr
L1 i ’
2 a(D (H?\ /2, jHF1/2 ki H?, /2. kFi41/2.n )
) Ay Az
— Jiiwn ] (A.5)
L1
x . At
Hi ez = Hijanae., — /T E a(l) X
1= L.
E: e 1/2 b1/ E? 10 i1 12
( ,.,+z+1£4; 2art1/2 LG Hi;rm 1,z> (A.6)

The sum in Eqgs. (A. 5, A. 6) is taken according to the
number of the connection coefficients a (1); L, gives the
support of the basis functions, i. e. , the number of coeffi-
cients per side. The values of the connection coefficients a
(1) can be found in Ref. [7], in which the equations for
other E and H components can also be found.

The evolution of the electromagnetic fields should
maintain the numerical accuracy and computational stabili-
ty. These requirements depend on the choice of the space
grid and the time increment. Naturally, the change of elec-
tromagnetic field over the chosen space grid size should not
be very big. Thus, for a computational stability, it is nec-
essary to satisfy a relation between the space grid and the
time increment At. The stability criterion implemented in
this work ist™
At <

Lo&\am\W(ﬁfﬂfyﬁ%ﬂﬂ

=0

(A. D
where ¢, is the speed of light.

It should be noticed that in most optical waveguide
problems the problem space must be truncated, and a prop-
er ABC must be applied to these truncation planes. The
ABC requires that the waves arriving at the region bounda-
ries should be absorbed without generating significant re-
flections. Thus, following the detailed description in Ref.

[7], an APML is implemented in this work.
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