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Abstract: A conformal multi-resolution time-domain (CMRTD) method is presented for modeling curved objects.
The effective dielectric constant and area weighting are used to derive the update equations of CMRTD. The back-
ward scattering bistatic radar cross sections (RCS) of the dielectric cylinder and ellipsoid are used to validate the

proposed method. The results show that the proposed conformal method is more accurate to deal with the complex
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curved objects in electromagnetic simulations.
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1 Introduction

The multi-resolution time-domain (MRTD)
method for solving electromagnetic field prob-
lems, introduced by Krumpholz and Katehi''’ and
Robertson, et al!, is based on the expansion of
unknown fields in terms of scaling functions.
Tentzeris, et al investigated the stability and dis-
persion of Battle-Lemarie MRTD method for dif-
ferent stencil size and for zero-resolution wavelets
and concluded that MRTD had better dispersion
than traditional finite difference time-domain
(FDTD) method™. Many works on MRTD have
been exerted in the past two decades. Cheong, et
al firstly proposed the MRTD method based on
the Duabechies’ wavelet with two vanishing
wavelet moment in spatial domain and the numer-
ical results showed the good agreement with
FDTD correspondentst. A MRTD scheme intro-
duced by Dogaru and Carin is based on a field ex-
pansion in terms of Cohen-Daubechies-Feauveau
biorthogonal scaling and wavelet functions™ .

Wei, et al'® described a new MRTD scheme

which was developed based on Coifman compactly
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supporting scaling functions with a number of
vanishing moments. Multiple image technique
and anistropic perfectly matched layer were pres-
ented by Cao, et al™ for boundary truncations of
microwave structures. Cao, et al®™ proposed
Runge-Kutta multi-resolution time-domain (RK-
MRTD) with higher order both in space and time
domain. The Coifman scaling function based
MRTD technique was discussed in terms of appli-
cability to model problems in microwave and
The con-

formal scaling MRTD technique was applied for

wireless communication engineering™.

electromagnetic scattering problems containing

curved perfectly conducting objectst"

. Jiang and
Zhou, et al " constructed the MRTD cylindrical
grids with perfectly matched layer and applied
MRTD to calculate electromagnetic fields of light-
ning return stroke. Yun, et al''® presented a ro-
bust conformal FDTD method for the accurate
modeling perfectly conducting objects with curved
surfaces and edges. A modified local conformal fi-
( MLC-
FDTD) which was used to analyze broad wall ra-

nite difference time-domain method
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diating slots in a finite wall thickness waveguide
A modified con-
formal technique implemented in the high-order
FDTD (2,4) was proposed by Wang, et al''’ to
the

was derived by Zhang, et all'®

investigate interaction of electromagnetic
waves with three-dimensional electrically large
curved dielectric objects. Gao, et al'® discussed
the conformal MRTD method on scattering per-
fect conducting object, but failed to discuss how
to solve dielectric objects.

usually

However, these existing methods

lead to large staircase errors. Conformal tech-
nique is an advantage to deal with the dielectric
We propose a CMRTD method to deal

interface.

with the curved objects.

2 Conformal MRTD Method

For simplicity, without the loss (=0), and
Az, the equation of
electric field for MRTD method is updated as
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where E, H are the electric field and the magnetic

Hfil(iré)i; w05 — H ”+>, ko0, )JFH,\#]()JF? ;}k v—0.5)
field, respectively; x,y and 2 the x axial direc-
tion, y axial direction and z axial direction, re-
spectively, i, j and k the indices of the computa-
tional cells, n is the index of time step, v the
phase velocity, Ar the temporal step size,e, the
dielectric constant, L, the spatial support inter-

and a(v) the coefficients of Daubechies scal-
[8]

Vale
ing function
To derive the CMRTD method, Eq. (1) can

be rewritten as
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From Ref.[16], we know that Ea(v)(2v+

=0

1) =1, then Eq. (2) can be discomposed to L,
sub-equations as
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0,1,2,+ L,—1) is the dielectric

and (2L, —1) -
Ax. Summing Egs. (3—5) can obtain E, updating
equation of CMRTD as
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Comparing Eq. (6) with Eq. (1), we can get
the effective dielectric constant e as
L *1

eft = 2<2v+1>a<v>s (v)

v=0

D

The area weighting technique is used to deal

withe, (v) (v=0,1,2, -+ L., — 1" shown in

Fig. 1, Eq. (7) can be modified as

Fig. 1 Distribution of objects
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L1
e = ; (ZUer(Ilj)) .S’
ler « S+ (Qv+1)?«S—8) ee,] (8
where S is the unit cell area, S,the area out out-
side the object. In the same way, we can obtain
e, e and the updating equations of E, and E. for

the CMRTD method.

3 Numerical Examples

Numerical examples of scattering cylinder
and ellipsoid are used to validate the CMRTD
method. The scaling function refers to Dau-
bechies 2 scaling function. All computational
simulations are conducted on a PC with Pentium
dual-core 2. 8 GHz CPU and 1. 87 GB as memory.

0 is the incident angle.
3.1 Dielectric Cylinder

The radius of the dielectric cylinder is
0.015 m and the height 0. 06 m. Relative permit-
tivity e,is 4, and relative permeability p, is 1. An
incident sinusoidal wave with a wavelength 0. 03
m propagates along the z-direction, and its polar-
ization is along the x-direction. The comparisons
of different methods are shown in Fig. 2. Fig. 3
shows the errors between CMRTD (MRTD) and
method of moment (MoM) methods. The results
indicate that the CMRTD method is more consis-
tant with the MoM method. Table 1 shows the
magnitudes of the spatial discretization, temporal
discretization, total computational domain, total
time steps and CPU time. From Table 1, it is
found that the CPU times of these methods are

similar, the accurate of CMRTD is the closest to

Fig. 2 RCS of E-plane different methods

Fig.3 Errors of different methods

the time of the method of moment.
Table 1 Comparison of MRTD and CMRTD

Total CPU
Method Axz/m At/s Cell

time/s time/s
82X 82X 82 2 000 1 645.43

82X 82X 82 2 000 1 756.34

MRTD 0.003 3.2
CMRTD 0.003 3.2

3.2 Dielectric Ellipsoid

The radius of dielectric ellipsoid are 0. 6, 0. 6
and 0.3 m, along x-, y-, z-direction, respective-
ly. The relative permittivity e, is 4, relative per-
meability 4, 1, the polarization of the electric field
along x-direction, and the wavelength of the inci-
dent wave is set as 0. 3 m. The CFL number is
chosen as 0. 3.

Backward scattering bistatic RCS in different
schemes are drawn in Fig. 4 and Fig. 6. Fig. 5
shows the errors between CMRTD (CFDTD) and
MoM method. It is found that the CMRTD meth-
od is more accurate than other methods. The
comparisons of CPU time in different methods are
listed in Table 2. Fig. 7 shows the errors between
CMRTD (CFDTD) and MoM methods.

Table 2 Comparison of CFDTD and CMRTD

Total CPU
Method Ax/m At/s Cell ]
time/s

2 000 4 125.37
2 000 4 656.38

time/s

CFDTD 0.03 30
CMRTD 0.03 30

118 X118X92
118X 118X 92

4 Conclusions

The CMRTD method is presented for com-

putational electromagnetic computations of some
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Fig. 4 RCS of E-plane different methods

Fig.5 Errors of different methods

Fig. 6 RCS of H-plane different methods

dielectric objects. The effective dielectric constant
is used to derive the updating equation of the CM-
RTD method. The area weighting are used to
deal with the object interface. The backward
scattering bistatic RCS of the dielectric cylinder
and ellipsoid are given to validate the CMRTD
method. And the results show that the proposed

method is more close to the MoM method and are

Fig. 7 Errors of different methods

more accurate when treating the curved objects.
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