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Abstract: Electromagnetic scattering from inhomogeneous three-dimensional (3D) bi-anisotropic scatterers is for-

mulated in terms of the volume integral equation (VIE) method. Based on the volume equivalence principle, the

VIE is represented in terms of a pair of coupled bi-anisotropic polarized volume electric and magnetic flux densities.

The VIE is solved using the method of moments (MoM) combined with tetrahedral mesh. Then the fast dipole

method (FDM) based on the equivalent dipole method (EDM) is extended to analyze the scattering of bi-anisotrop-

ic media by solving the VIE. Finally, some numerical results are given to demonstrate the accuracy of the devel-

oped method for the scattering analysis of the bi-anisotropic media.
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1 Introduction

Considerable attentions have been given to
bi-anisotropic media in recent years because of
their unique properties in affecting the behavior of

electromagnetic fields™™.

As a kind of complex
media, bi-anisotropic media incorporates large va-
riety of media, such as chiral or bi-isotropic
media, gyrotropic chiral media, Faraday chiral
media, anisotropic media, gyrotropic media, and
SO on.

A number of numerical studies concerning bi-
anisotropic materials and its scattering properties

d[é 13]

have been develope , such as finite-difference

time-domain (FDTD) method™’, hybrid finite el-

ement boundary integral (FEBI) method™, and

method of moments (MoM)!7,

domain methods rely on the Z-transform of ana-

However, time-

lytical expressions that describe the dispersion
properties of a material. These analytical expres-

sions are in many cases very difficult to be ob-
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tained. The disadvantage of FEBI is that the
boundary element method ( BEM)
dense, which greatly limits the application of FE-

matrix is

Bl in solving electrically large problems. The
MoM as one of the most popular approaches has
been extensively adopted for solving arbitrarily
shaped three-dimensional (3D) inhomogeneous
anisotropic bodies. However, it is well known
that the MoM usually results in a very large and
dense matrix when applied to analyze electrically
large objects. For the reason, some fast algo-
rithms, such as the multilevel fast multipole al-

bo- 13 precorrected-FFT  algorithm?,

gorithm
adaptive integral method (AIM)", cquivalent
dipole method (EDM )t 17,

method (FDM)M%% are generally employed to re-

and fast dipole

duce the memory requirement and speed up the
solution process.

In this paper, the volume integral equations
(VIE) is formulated for electromagnetic scatter-

ing by arbitrarily shaped complex bodies with in-
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homogeneous bi-anisotropic scatterer. Then the
FDM based on the EDM is first extended to solve
the VIE.

2 VIE Formulations for Bi-aniso-
tropic Materials
The constitutive relations for bi-anisotropic

materials can be written by the following consti-

tutive relations

DZ;rEO.E+EV€0f1() - H Q)
BZ?\/&)/A) * E+I:‘r/l() - H 2

where g, and u, are the relative permittivity and
permeability tensor, respectively; € and ¢ the
magnetoelectric tensors. One of the fundamental
properties of bi-anisotropic media is the cross-
coupling between the electric and magnetic fields.

For bi-anisotropic materials, Eqgs. (1,2) can

also be rewritten by
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é eopo . Based on the volume equivalence prin-

in which

ciple, the equivalent electric and magnetic polari-

zation currents J,(r) and M,(r) can be expressed

by
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The total fields represented by a sum of the inci-
dent and scattered fields can be obtained by
E=FE —joA,(r) — V¢, (r) —

Loxarm rev (10)
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where G, (r,r") is the free space Green's function.

3 MoM Matrix Equation

The inhomogeneous bi-anisotropic objects are
divided into tetrahedrons. For each face of the
tetrahedron, we assign a basis function. Then
both the electric flux density D and magnetic flux
density B are expanded by Schaubert-Wilton-Glis-

son (SWG) vector basis functions*, namely
N
B(r) = > B,f. (P (16)
n=1
N
D) = > D, f.(r an

n=1

where N is the total number of faces of the tetra-
hedral meshes. D, and B, are the unknown coeffi-
cients to be determined. f., denotes the nth vol-
ume basis function defined in two adjoining tetra-
hedrons in the volume meshes associated with
common face n .

Using the Galerkin's method, the integral
equations are converted into a matrix equation,

and can be formally written as

Zi’f Z('IH 11‘ vé’
= (18)
me Z mm m V//l
where the elements of the block impendance ma-

trices are

YA :JT fu(r) e (@« fu(r)do—

wzﬂoj’l_ fmn (r) - JT G(I‘al‘/)(ﬁl °

fo (r)do do+

ij \var fw,(r)J Graf')V »
TW T”

€0

(Bl e fo. () do'dv+



276 Transactions of Nanjing University of Aeronautics and Astronautics

Vol. 31

ijT fvm * JT VG(IMI‘/) X (ﬁg . f'm> d'U/d'U
(19
25 = Fu ) @ () do—

w2#0J S (r) e J Gr.r') (B, »

T, T,

f’lﬂl (r))dw/dv+

iJ v .fum(r)J G(r,r/)v .
T "

€o

Bo + [ (1) do/do+
JwJT I -JT VG ') X (B fu) dv'do
(20)
z, :f o (P o (s = o () do—

(1)25()[ f,,,;,(r) 'J G(rar,)(ﬁii *
T T

fo(r)Hdo'do+
ij Vo fw,,(r)J Gr.r)V « (B, +
PoJ T, T,

Fo () do do—
ij fo J TGrr') X By + fu) do/do
T T
1)

Z:])z:;l :J fwn (I‘) * (&4 M fw (r)> d'U_
T

wzs()J £ (o J G ) (B, -
T, T,

Fo () do do+
iJ v -fw,,(r)J Gra)v' -
HoJ T, T,

B+ [ () do'do—
ijT f‘ww ° JT VG(I‘J/) X (ﬁz . f'm) d’U/d‘Z)

22)
4 FDM for Bi-anisotropic Materials

The FDM is an efficient way to solve the
VIE, which is based on the EDM. In the EDM,
each SWG element can be approximated as an in-
finitely small dipole with an equivalent moment.
Referring to Refs. [14,15], the nth volume dipole
moment m;, can be represented as

m, =a,Bu.(r) e« r, —ri) +ap. ) -
i=1,2.3.4 (23)

where ri& are the position vector of the centroid of

(r, —r,)

T% and r:, is the position vector of the centroid of

the common face of the T} . a, is the area of the
The im-
pedance matrix elements in Eqgs. (19—22) can be
calculated by the EDM

YA =j/e17m/,,,- G(R) » m,, — jkm’,» G(R) X m,,

nth common face associated with T3 .

(24)
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In Egs. (28,29), R=r, —r,.R=|R]|. R=R/R.
. o
In addition, r, :("“Zﬂ and r,, :W .

re (r$ ) are the position vector of the centroid of

TE ( T ). According to Refs. [14,15], the EDM
can be applied when the distance between the
source and the field dipole is greater than 0. 152,
(A, is the wavelength in dielectric). It should be
noted that A, is the maximum wavelength in die-
lectric when the medium is inhomogeneous.

In Refs. [16,187], the FDM is developed to
efficiently calculate the interactions between far
groups. Here, we use the number of interval
groups D(i,;) between group i and group j to de-
cide if the two groups are near-group pair or far-
—x; |y lyi— il
|2;—=2;|}/d » where (x;,y;,2) and (x;.y;,2;)

group pair. D(i,j) = max{ |z,

are the coordinates of the centroid of group i and
group j respectively, and d is the side length of
the group. For example, if D(i,j) > D, , group{
and group j are the far-group pair, where D, =1
is a given integer. And D, can be used to control
the accuracy of the FDM. Generally, the criterion
D, =3 for the FDM usually can give good RCS so-
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lutions when the size of groups is smaller than
0.5X. In the paper, D, is taken as 1 to save
memory requirements.

In order to describe how the FDM works for
dielectric and magnetic materials, we consider
two dipoles m and n, which belong to groups j
and 7, respectively, and suppose the two groups
are a far-group pair. The distance between the
two dipoles can be written asR= r,, —r, = r; +
r,; +r., s wherer; SR PARY SRl Pl PRNY TS
T A and r, are the center vector of the
groups. According to Ref. [17], R* in Eqs. (28,
29) can be expanded using Taylor series approxi-
mately
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Then substituting Eqgs. (31, 34) into Egs. (28,
29), the formulations of FDM for electromagnetic
materials can be obtained.

Now we consider how to use the FDM to cal-
culate the interactions among the equivalent elec-
tric or magnetic dipoles in group i and group j .

The effect of all the electric and magnetic dipoles

in group 7 on the mth electric dipoles in the group
j can be expressed as

D L+ Zo I A jkgm, -

nei

N,
[ DIGMR) - (my I+ m, 1) —

n=1

N,
LSV6w) % anod + moam } (39)

n=1
In a similar way, the effect of all the electric and
magnetic dipoles in group i on the mth magnetic
dipoles in the group j can be expressed as
Dl A 2 & jkm), .

nei
N

[ DGR X (my X5 4 mo, 1) +

n=1

%Eém) . <m3,,1:,+m4,,1:">} (40)
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In the FDM, the calculation remains the same as
in the MoM/EDM procedure for near-neighbor
matrix elements. The calculation of the far-field
interaction groups is significantly accelerated by
the processes of aggregation-translation-disag-
gregation. According to Refs. [16 — 18], the
complexity of interactions between two far groups
such as group 7 and j is reduced from O(N;N;) to
O(CN,;+N,), where N, and N, is the number of

the dipoles in group 7 and j, respectively.
5 Numerical Results and Discussion

The generalized minimum residual methods
(GMRES) iterative solver is employed to obtain
an identical residual error which is smaller or
equal to 0. 001. All the simulations are performed
on a personal computer with the Intel(R) Penti-
um (R) Dual-Core CPU E2200 with 2. 0 GHz (on-
ly one core is used) and 2. 0 GB RAMI{.

As the first example, we consider a plane
wave scattering from a chiral cube of side length

0. 2X,. The chiral cube is characterized by a rela-

tive chirality & , where j&, =&/ \/e,iu, » and £=—¢.
The relative permittivity, permeability and chiral-
ity aree, =9,p, =1, and £, =0.0,0. 3,0. 5, respec-
tively. This body is illuminated by a plane elec-
The cube is divid-

tromagnetic wave from §=0°.
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Fig. 1 Bistatic RCS of chiral cube

ed into 4 023 volumetric cells with an average
edge length of 0. 025),, and the total number of
unknowns is 16 860. All the unknowns are divid-
ed into 261 nonempty groups and the size of each
group is 0. 044 for using the FDM. The normal-
ized 06 and @@ polarization bistatic RCS of the
chiral cube shown in Fig. 1 are compared to those
from Ref. [20] and good agreements are ob-
served. The CPU time, memory requirement and
iterations when & = 0.5 are shown in Table 1.
However, it is impossible to solve this problem
using the conventional MoM and EDM method for

insufficient memory.

Table 1 Total CPU time, memory cost and iterations
of RCS solutions for FDM
Object Time/s RAM/MB  Iteration
Cube (& = 0.5) 1628 291 66
Cylinder (2= 0.5) 1601 363 20
Spheres 9519 1 060 80

In the second example, we calculate plane
wave scattering from an omega cylinder. The ra-
dius and height of the finite circular cylinder are
a=0.51 and h =0. 21 , respectively. It is known

that omega materials are a special type of bi-ani-

sotropic media whose constitutive tensors are in
the form as follows

e 0 0 w00

0 0 e 0 0
0 0 0 0 —in o
E=1|in 0 0/, ¢=10 0 0f D
0 0 0 0 0 0

wheree, =2,e, =36, =2, 1 =1. 2,0, =1. 2505 =
1.0.2=0.0,0.5,1. 0. The cube is divided into
6 950 volumetric cells with an average edge length
of 0. 061 , and the total number of unknowns is
29 274. Totally 589 nonempty groups with the
size o 0. 081, are obtained. The CPU time, mem-
ory requirement and iterations when 2 = 0.5 are
shown in Table 1. The 09 polarized bistatic RCS
for a normally incident plane wave are calculated.
Results shown in Fig. 2 are compared to those

from Ref. [6] and good agreements are observed.

10 —z
Jrs

g {
< 0
3
g -10
A
O
" 20
p= —Ref[6]
2 —— This paper
m 30+ 02=0.5 0=1.0

0 20 40 60 80 100 120 140 160 180
0/()

Fig.2 00 polarized bistatic RCS from an omega cylinder

In the last example, we consider spheres
with different constitutive parameters to demon-
strate the versatility of our code in solving bi-ani-
sotropic problems. There are four spheres along
the x direction. The radiuses of the spheres are
0.2), and the distance between them is 0. 5A,.

The first one is a gyroelectric sphere with g, =
2.5 j

—j 2.5 O The second one is a gyro-
0 0 1.5
2.5 ] 0
magnetic sphere with g, = |—j 2.5 0
0 0 1.5

The third one is a chiral sphere with g, =1. 51,

p,=1.5I, E=—¢=—0.21,. The last one is a
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Fig. 3 Bistatic RCS of spheres

chiral

Faraday sphere with €, =
2.5 ] 0 2.5 ] 0
—j 2.5 0|, p=|—j 25 0|, &=
0 0 1.5 0 0 1.5
—¢ = —0.2I, . The configuration of the spheres

is shown in Fig. 3. The spheres are discretized in-
to 14 696 tetrahedrons. The total number of un-
knowns is 61 038. Totally 2 635 nonempty
groups with the size of 0. 041, are obtained. Fig. 3
shows the bistatic RCS of the spheres for a nor-
mally incident plane wave. We have computed
both co-polarized and cross-polarized RCS for
scattering angle ¢ = 0°,90° , respectively. From
these figures, we can see that forsy and sy 5 the
results in ¢ =0° plane are larger than those in ¢ =
90° plane. For the RCS, the results have many
valleys in ¢ = 0° plane, while they are smooth in
¢$=90" plane. The cross-polarized RCS for the bi-
anisotropic object can not be ignored. The CPU
time, memory requirement and iterations are
shown in Table 1. From Table 1, we can see that

the FDM can save the memory requirement and

speed up the solution process significantly.

6 Conclusions

VIE based on the volume equivalence princi-
ple has been formulated for scattering from bi-an-
isotropic bodies with arbitrary shape. Then the
FDM are extended to solve the problem. The ap-
plication of FDM can reduce the memory require-
ment and improve computational efficiency signif-
icantly. Numerical examples are presented to il-
lustrate the accuracy and versatility of the pro-
posed method. The obtained results also show
that the cross-polarized bistatic RCS for bi-aniso-

tropic materials can not be ignored.
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