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Abstract: A nodal discontinuous Galerkin formulation based on Lagrange polynomials basis is used to simulate the
acoustic wave propagation. Its dispersion and dissipation properties for the advection equation are investigated by
utilizing an eigenvalue analysis. Two test problems of wave propagation with initial disturbance consisting of a
Gaussian profile or rectangular pulse are performed. And the performance of the schemes in short, intermediate,
and long waves is evaluated. Moreover, numerical results between the nodal discontinuous Galerkin method and fi-
nite difference type schemes are compared, which indicate that the numerical solution obtained using nodal discon-
tinuous Galerkin method with a pure central flux has obviously high frequency oscillations for initial disturbance
consisting of a rectangular pulse, which is the same as those obtained using finite difference type schemes without
artificial selective damping. When an upwind flux is adopted, spurious waves are eliminated effectively except for

the location of discontinuities. When a limiter is used, the spurious short waves are almost completely removed.
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Therefore, the quality of the computed solution has improved.
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1 Introduction

The numerical simulation of acoustic wave
propagation poses a significant challenge in scien-
tific computation. For simulating such problems
directly, numerical schemes that have minimal
dispersion and dissipation errors are expected.
Since the acoustic waves are non-dispersive and
non-dissipative in their propagation™, it makes
standard computational fluid dynamics (CFD)
schemes, designed for applications to fluid prob-
lems, generally inadequate to simulate acoustic
problems. In this regard, it has appeared that
highly accurate methods are needed for long-time
simulations of acoustic wave propagation phe-
nomena, because they are usually less dispersive

and less dissipative.

Article ID:1005-1120(2014)03-0293-10

Many current numerical methods employed
to study such problems are the finite difference
type, such as the widely used dispersion-relation
( DRP) ]

But the finite difference scheme is

preserving scheme and compact

scheme "',

based on uniform Cartesian grid, which does not
adapt well to complex geometries. Subsequently,
finite element method has also been advocated by

]

numerous authors'® . This method uses unstruc-

tured meshes, but it is still not able to solve
without spurious

! . . .
Euler's linearized equation

model™. Recently, a discontinuous Galerkin fi-
nite element method (DG-FEM) has been devel-
oped to numerically solve the initial boundary val-
ue associated with hyperbolic conversation equa-

[8-12]

tions The method is a finite element method

that allows discontinuity of the numerical solution
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at element interfaces, and has the advantage of
being more flexible for complex geometriest® !,
Coupled with its capacity and relative ease of im-
plementation in high-order polynomials, it has
been recognized as an attractive alternative meth-
od for acoustic problemst* 1%,

According to the differential expression of
approximation, there are two distinct types of DG
method: nodal and modal’”’. In Ref. [15], a
study on modal DG method, which is based on
Legendre polynomials basis, to acoustics propa-
gation has been presented and some correspond-
ing works, including dispersive, dissipative char-
acteristics and perfectly matched layer absorbing
boundary condition, were discussed in Refs. [16,
187]. Thus in this paper, dispersion and dissipa-
tion properties of nodal DG method, which is
based on Lagrange polynomials basis, are investi-
gated by utilizing an eigenvalue analysis. Then,
some test problems of wave propagation with ini-
tial disturbance consisting of a Gaussian profile or
rectangular pulse are investigated, and the per-
formance of the method in short, intermediate,
and long waves are evaluated. Finally, the com-
parisons of dispersion properties are performed

between the nodal DG method and finite differ-

ence type schemes.

2 Description of Nodal DG Method
and Its Dispersive Properties
2.1 Model problem

Consider an advection equation in one dimen-
sional space
du/It+df/dx=0 @D)
where f=au, here a is a constant. This is sub-
ject to appropriate initial conditions
ux,0) =exp(ikr) (2)
where x € R, k is the wave number of the initial
condition. It is well-known that Eq. (1) admits
non-trivial solutions of the form
ulx,t) =explilkr —wt) ] (3)
where w is a prescribed frequency. Inserting
Eq. (3) into Eq. (1), one easily recovers that w=

ka, known as the dispersion relation with a being

the exact phase velocity.
2.2 Discontinuous Galerkin discretisation

It is assumed that the computational domain
splits into non-overlapping equidistant elements,
D", with uniform grid length, h = 2} — xf, as
shown in Fig. 1, where subscripts “r” and “1” re-
present the right and left interfaces of the ele-
ment, respectively.

Dn’l Dn Dml

Fig. 1 Geometry for simple one-dimensional case

In Fig. 1, for each element, the local solution
approximation, denoted by u} (x,¢), with polyno-

mial basis functions is expressed as
m+1

Wi Ceat) = D uh (e, D1 (1) €))
p=1
where ,(x) € P,,(D"), P, (D") is the mth order

»m+1

are Lagrange polynomials defined on m+1 inter-

polynomial space on D", [} (x), p=1, -

polating grid points within D", then the order of
scheme is m—+1.

In order to determine the approximate solu-
tion uj (x.t), Eq. (1) is multiplied by a test func-
tion v and integrated over the interval D*. Then,
the exact solution u(x,t) is replaced by the ap-
proximation u} (x,¢), and the test function v is
replaced by v;. After applying the integration by
part twice, the strong formulation form is recov-

ered.

J 9“;:(1’1)
D" dt

v (x)dx JrJ ﬂ‘v}i (x)dx =

p" dx

n

[ vl () — [ (u}f)v}f(z)] (5)

T
where numerical flux can be expressed as
f ) =/f" Cu; su; )s whose value at the point
(x,t) depends on the two values of the approxi-
mate solution at (x,¢). One u, is the value ob-
tained from the interior of the element D", and
the other u;, is the value obtained from the exteri-
or of the element D”. In this paper, the expres-

sion of numerical flux is defined as

N ‘ - )
f“=(au)"=au7+2u +|a\7(12a)(n u +
ntu) (6)
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where parameter ¢ in the numerical flux can be
used to control dissipation. For example, taking
a=1 yields a non-dissipative central flux and ¢ =0

U7 One is free,

results in the classic upwind flux
however, to take « to be any value in between. n

is a unit outer normal vector.

m+1

D flui(a,

p=1

Assuming that flux f(uj) =

m+1

27) Ly (x)

q=1

)0 (x) , test function vj(x)

Eq. (5) is rewritten as

d”"J z';(x)z:;mdmuj ai]
dt Jp» D"

(7[,,(1)

i (x)dx =

[(au V() — Caul) z;;m} 0

Eq. (7)

yields a system of time evolution equations for the

for all locally defined test functions vy

expansion coefficients for each element. This sys-

tem is usually solved by some time integration

scheme, such as the Runge-Kutta schemes'"

2.3 Dispersive behaviour of nodal discontinuous

Galerkin method

Introducing a local coordinate & for each ele-
xl+af
2

. 2
ment, and assuming SZ*(]@* ) , one has

h

hM du,,
2

+aSu; —%w ) — i (a0 ]

o a(2 7&)61 [L}”
- 5 /1

5 ) —u (] (8)

1
where M:J 1,(8)1,(&dE is the mass matrix, S=
1

1
J 1,(&) dl(’(;)dé is the stiffness matrix, and
—1

e,(p=1,-+-,m+1) is an m + 1 long zero vector
with 1 in entry p.

To compute the dispersion relation of the
scheme, a solution is sought in the usual form
rexplilkr —wt) ] [€))

where Uj is the vector of coefficients. Eq. (9) re-

M}i(-rs[) ==

presents a sinusoidal wave train in terms of wave
number £ and frequency w. Then the expansion
coefficients of the solution (x,,t) are calculated
by projecting Eq. (9) onto the local basis of the

elements in the mesh as

J expli(kr—wt) ]} (x)dx
[ da

u;i (I/) 9[) -

Assume periodicity of the solution as
w2, =expGkh) u) (xf o t)
up P () =exp(—ikh)u) (a2t 1)
After isoparametric transforming, and insert

them into Eq. (8), one obtains

[~ M+ 05— 420

a(Z—a)
2

eni1 Cemir —exp (ikh) el ) +

el(elT*exp(*i/eh)ezﬂ)} = (10)

It is recognized as a generalized eigenvalue
problem
[2S—ae, 1 (erir—exp(GL(m+1))el ) +(2—a)e
(ef —exp(—iL(m+1)el, DU =i(m+1)QMU;

an

The problem is normalized as

L=Fkh/(m+1).Q=wh/[a(m+1)]

It is found that the numerical dispersion rela-
tion is that L= now, where the values of 2 are
generally complex. By solving the generalized
eigenvalue problem for Q =0, + i, . one obtains
the numerical dispersion relation in terms of the
real part Q, , which is the dispersion associated
with the scheme, and the imaginary part (; ,
which represents the numerical damping inherent
in the discretisation process.

The solution of Eq. (11) for a second-order
Fig. 2

shows the dispersion relation of nodal-DG method

nodal-DG method involves two modes.

with the pure upwind flux for these modes,
where the solid lines represent the exact case, and
the symbol-marked lines represent the numerical
dispersion and dissipation properties. One can see
that the numerical phase velocity, plotted as the
circle lines, is very close to the physical wave
speed, up to approximately L=0. 6 (according to
— L [<C0.005). As the

normalized wave number increases beyond 0. 6,

the accuracy limit | Q,

the numerical wave speed starts to deviate from
the exact value. Parasite mode associated with
the numerical scheme Eq. (8) is shown as the
quadrangle lines in Fig. 2. Note that the parasite
wave is severely damped for the resolvable range
of wave numbers. The directions of propagation
of these two numerical modes are opposite.

Fig. 3 shows the dispersion relations of nodal
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Fig. 2 Numerical dispersion relations for schemes of

order 2

DG method for the upwind flux with different or-
ders of approximation, where the solid lines re-
present the exact case, and the symbol-marked
lines represent the numerical dispersion relations
for a range of orders of approximation. The nu-
merical results indicate that normalized maximum
resolvable wave number of the scheme is about
0.62, 1.09 and 1. 40 for schemes of orders 2, 4
and 7, respectively, which is according to the cri-
teria mentioned above, i.e., | 2, —L | <C0. 005.
Clearly, the higher the order of the basis func-
tions, the larger the resolved space, which con-
firms the benefits of using high-order schemes for
wave propagation. Moreover, as shown in Fig. 3,
0; is for the different orders of approximation,
reflecting a significant dissipation of high frequen-
cy components.

To quantify the resolution of the scheme, let
us specify the dispersion and dissipation errorst®
to be less than 0.5%, i.e. , | 2, —L | <C0. 005 and
| Q| <<0.005. The dissipation criterion corre-
sponds to the damping of wave amplitude by less
than 10% over a distance of 20 elements. The

resolution property of the nodal-DG method is

4.0 } — Analytical solution
——m=1 A/\ A
—o—m=3 /

[ —A— m=6

G
0.0 0.5 1.0 1.5 2.0 2.5 3.0
L
(a) Dispersion properties
0 0 P S P P Y : D%:@—
20
Q' 4.0 -—— Analytical solution
—0—m=1
—o—m=3
6.0 F—A— m=6
_8.0 1 1 1 1 1 1
0.0 0.5 1.0 1.5 2.0 2.5 3.0
L
(b) Dissipation rate
Fig. 3 Numerical dispersion relation and dissipation

rate of physical mode for schemes of orders 2,

4 and 7

quantified in Table 1 using the maximum resolva-
ble wave number 4. and the number of degrees of
freedom per wavelength (computed as A/(h(m+
1))), according to the accuracy limit (| Q, —
L[<C0.005 and | £; | <<0. 005) on dispersion and
dissipation errors. It is evident from Fig. 3 and
Table 1 that the limit on the dissipation error im-
poses a relatively stringent condition on the accu-
racy of the scheme than does the dispersion error.
It is evident that under the higher orders of the
scheme, the number of points per wavelength of
nodal DG method is less than those of modal DG
method shown Table | in Ref. [16].

Table 1 Maximum resolvable wave number k.k according to

criteria [Q,—L|<C0.005 and |£2; | <<0. 005

Order (m+1) k.h

Point number per wavelength

2 0.62 19. 94
3 1.88 10. 02
4 3.77 6.66
5 5.50 5.71
6 7.54 5.00
9 12.72 4.44
13 20.42 4.00
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Fig. 4 shows the comparison of dispersion
properties among the nodal DG method, DRP
scheme and compact finite difference scheme,
where the solid lines represent the exact case; the
dot line, the circle line and the triangle line repre-
sent the dispersion properties of nodal DG meth-
od, DRP scheme and compact scheme, respec-
tively. For convenient comparison, the wave
number is normalized by the order of the scheme
m—+ 1. The numerical results indicate that the
normalized maximum resolvable wave number of
the scheme is about 1. 26, 1.15 and 1. 32 for nod-
al DG method, DRP

scheme, respectively, according to the criteria

scheme and compact

that the absolute errors are less than 0.5%. It il-
lustrates that the nodal DG method is appropriate

to direct numerical simulation of aeroacoustics.

4.0F —— Analytical solution
—A— Compact scheme /o"\.
3.0} —o— DRP scheme l
—e— DGM e
g 2.0} _* .
o \
0.0 1 1 1 1 1 1
0.0 0.5 1.0 1.5 2.0 2.5 3.0
L

Fig.4 Comparison of dispersion properties for differ-

ent numerical schemes with the same orders

3 Numerical Examples

To validate the nodal DG method for acous-
tics wave propagation, authors consider the solu-
tion of advection Eq. (1) with initial disturbance
consisting of a Gaussian profile or rectangular
pulse’ ! and let a=1. In all cases, grid length
is h=1.

Example 1 Initial disturbance consisting of
Gaussian profile is

u(zx,0) =exp[— In(2)(x/b)?] (12)
where b is the parameter that characterizes the
wavelength. In this paper, the performance of the
DG method in short, intermediate, and long
waves is evaluated. That is to say, three catego-
ries of waves are considered: (1) short waves
(b=3); (2) intermediate waves (b=6); (3) long
waves (b= 20). Moreover, the comparisons of
numerical results between the nodal DG method

and the 7-point stencil DRP scheme combined

with the fourth-order four-step Runge-Kutta
method are performed.

Figs. 5—7 show an overview of the two nu-
merical methods, namely, the nodal DG method
and the DRP scheme for short, intermediate, and
long wave computation at two different dimen-
sionless time instants, where the circle lines re-
present the numerical results and the solid lines
represent the exact cases. The computed results
obtained using DG method and the exact solutions
agree well with each other, which indicate that
the method produces a small level of dissipation,
without dispersion. For the DRP scheme, the
characteristics are different for short, intermedi-
ate, and long wave computation. For a short
wave, the DRP scheme initially produces a lower
error level, as shown in Fig. 5(d). At dimension-
less time t=1 500, there is significant numerical
dispersion ( with extensive trailing waves) in
Fig.5(e). As time progresses, dispersion be-
comes highly visible while dissipation becomes
gradually substantial, as shown in Fig. 5(f). For
an intermediate wave, throughout the entire com-
putation, only a small dispersion error appears
(Fig. 6(d)). For a long wave, DRP scheme per-
forms very well over the interval of time as shown

in Fig. 7.

12
—o—DG

Analytical solution

-0.2 L .
0 50 X 100 150

(a) Comparison between exact solutions and DG
method (=3, =100)

—o—DG
Analytical solution

1400 1450 1500 1550
x

(b) Comparison between exact solutions and DG
method (b=3, =1 500)
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Fig. 6 Comparisons of numerical results for different
Fig. 5 Comparisons of numerical results for different numerical schemes with the same order of 6

numerical methods with the same order of 6

tion, an initial disturbance wave with 6=0. 5 are
Finally, to further evaluate the performance investigated using this method. Fig. 8 presents

of the nodal DG method for short wave propaga- the comparisons between the exact and computed
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(d) Comparison between exact solutions and DRP
scheme (b=20, CFL=1, =9 000)

Fig. 7 Comparisons of numerical results for different

numerical schemes with the same order of 6

results. It is easy to see that, for 56=0. 5, the
nodal DG scheme initially produces lower error

level shown in Fig. 8(a). At time progresses (r=

4 000), dispersion becomes visible while dissipa-

tion becomes gradually obvious shown in
Fig. 8(b), which indicate that the wave number
of physics wave excess the solvable wave number
range of nodal DG method.
1.2
1.0F

0.8

—o—DG
Analytical solution

0.6

u(x, 1)

0.4
0.2

0.0

_0.2 1 1
390 395 400 405

(a) b=0.5, =400

—o—DG
1LOr —— Analytical solution

u(x, 1)

-0.2 : : '
3985 3990 3995 4000 4005

X
(b) 5=0.5, =4 000

Fig. 8 Comparisons between exact solutions and that

of DG method with the order of 6

Example 2 Initial disturbance consisting of
rectangular profile is

u(x,0) =0.5[ H(x+50) — H(x — 50) ]

(13)
where H(x) is the Heaviside function.

In this paper, authors study the performance
of the DG method in rectangular wave. Moreo-
ver, numerical results among the nodal DG meth-
od, the seven-point stencil DRP scheme and the
five-point 6th order compact scheme combined
with the 4th order four-stage Runge-Kutta meth-
od are compared.

Figs. 9 — 11 show the comparisons between
the numerical results obtained using nodal DG
method, DRP scheme and compact scheme and
the exact case at dimensionless time t=50 respec-
tively, where the solid lines represent the exact

case and the circle lines represent numerical re-
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sults. In Fig. 9, the numerical solution obtained
using nodal DG method with a pure central flux
has obviously high frequency oscillations shown
in Fig. 9(a), which looks like the same as those
of finite difference type scheme without artificial
selective damping shown in Figs. 10 (a,c). The
spurious waves of the computed solution are gen-

erated by the discontinuities of the initial condi-

tion.
=~
¥
3
-50 0 50 100 150
X
(a) With a central flux
0.6
|
041
<
9 —o—DG
Y Analysis
¥ 02t 7
0.0 }
-50 0 50 100 150
X
(b) With an upwind flux

Fig.9 Comparisons between the computed and exact

solutions (1=50)

The grid-to-grid oscillations have the highest
group velocity. If an upwind flux is used, un-
physical oscillations except for near the discontin-
uous location are eliminated effectively, as shown
in Fig. 9(b). Therefore, a technique to eliminate
possible spurious oscillations at the discontinuous
location without any effect on smooth region is
needed. For finite difference type schemes, if the
artificial selective damping terms, described by
Ref. [21], are added to the advection Eq. (1), the
unphysical oscillations are largely removed, as
shown in Figs. 10(b,d). For the nodal DG meth-
od, if a TVBM slope limiter described by
Ref. [12] is introduced, the unphysical oscilla-

Vol. 31

0.6 l

041
< —o—DRP
S .
= Analysis
= o02f

¥
=50 0 50 100 150
x

(a) Comparison between exact solutions and DRP scheme
without artificial selective damping

0.6
¥ —o—DRP
T Analysis
I
=50 0 50 100 150
X

(b) Comparison between exact solutions and DRP scheme
with artificial selective damping

0.6
0.4+
- —o— Compact Scheme
X .
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(c) Comparison between exact solutions and compact
scheme without artificial selective damping
0.6
&
[ |
0.4+
e — o — Compact Scheme
g Analysis
® 02t
i |
0.0 s %
-50 0 50 100 150
x
(d) Comparison between exact solutions and compact
scheme with artificial selective damping
Fig. 10 Comparisons between the computed and the

exact solutions (t=50)

tions are almost completely eliminated as shown

in Fig. 11. The quality of the computed solution
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is greatly improved, which is even better as the

grid length decreasing(Fig. 11(b)).

0.6
0.4}
_ —o—DG
:n 02k Analysis
1
0.0
-50 0 50 100 150
X
(a) With an upwind flux (5=1)
60
40
- —o—DG
s 20t Analysis
=
0
-50 0 50 100 150
x
(b) With an upwind flux (2=0.5)
Fig. 11 Comparison between computed and exact so-

lutions, with limiter t=50

4 Conclusions

A dispersion analysis of nodal DG method for
the advection equation is investigated by utilizing
an eigenvalue analysis. The present study shows
that, with the same orders of scheme, the nor-
malized maximum resolvable wave number of the
nodal DG method is between those of the DRP
scheme and compact scheme, and the number of
points per wavelength of this method is less than
those of modal DG method.

Two kinds of test problems of wave propaga-
tion with initial disturbance consisting of a Gauss-
ian profile or rectangular pulse are investigated.
The computed results indicate that the nodal DG
method performs very well for short, intermedi-
ate, and long wave computation over the interval
of time. However, DRP scheme may produce sig-
nificant numerical dispersion and dissipation for a
short wave, as well as small dispersion error for

intermediate wave. For the initial disturbance

with rectangular pulse, the nodal discontinuous
Galerkin method with a pure central flux has ob-
vious high frequency oscillations, which is the
same as those obtained using finite difference type
schemes without artificial selective damping. If
an upwind flux is adopted, spurious waves are
eliminated effectively except for the location of
discontinuities. When a TVBM limiter is used,
the spurious short waves are almost completely
removed. The quality of the computed solution
has greatly improved, which illustrates that this
method is appropriate for simulating the acoustic
wave propagation even including initial disconti-

nuousness.
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