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Abstract: Aiming at the large cost of calculating variable bandwidth kernel particle filter and the high complexity of
its algorithm, a self-adjusting kernel function particle filter is presented. Kernel density estimation is facilitated to
iterate and obtain new particle set. And the standard deviation of particle is introduced in the kernel bandwidth.
According to the characteristics of particle distribution, the bandwidth is dynamically adjusted, and the particle
distribution can thus be more close to the posterior probability density model of the system. Meanwhile, the kernel

density is used to estimate the weight of updating particle and the system state. The simulation results show the
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feasibility and effectiveness of the proposed algorithm.
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1 Introduction

Particle filter has been widely applied in non-
linear, non-Gaussian dynamic system, including
target tracking, navigation, fault detection and

(4] since it was put forward in

computer vision
1999. It is necessary to further research on criti-
cal issues of particle filter, especially how to sam-
ple high quality particles, which can help to im-
prove the performance and efficiency of particle
filter.

Kernel particle filter (KPF) was proposed by
Chang, et al”®!. KPF uses kernel density estima-
tion (KDE) method™™ to iterate and acquire the
samples of new particles, so that the particles can
be distributed in the place where the weight is lar-
ger, which can improve the accuracy of posteriori
probability distribution estimation. Different
from the traditional practice which improves the
excellent characteristic of important density func-
tion"® to obtain high-quality particles, this meth-

od utilizes the non-parametric estimation to redis-
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tribute the particle set, and the iteration makes
the particles move to the high likelihood region of
the maximum posteriori probability density mod-
el. In this way, the produced particle set can re-
flect the density distribution of status posteriori
probability.

In the kernel density estimation, the selec-
tion of kernel bandwidth is critical, and its impor-

tance is more than that of kernel function-.

L) et al. used the empirical value to for-

Joachim
mulate the rules for band width change. This ap-
proach relies on human experience and the change
characteristics of the entire particle set cannot be
correctly reflected, which seriously affects the ac-
curacy of kernel density estimation and reduces
the performance of particle filter. Avramidis "
proposed a method of bandwidth selection based
on interpolation and data, and acquired the global
optimal bandwidth by solution process, which
was taken as the mean bandwidth in the kernel
density estimation. The performance of this ker-

nel bandwidth is much better than that of the ker-
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nel bandwidth proposed by Chang, et al’! and
Joachim, et al“"™, but the mean kernel bandwidth
is not applicable to the movement of all the parti-
cles. Li, et al'®® presented the method of covari-
ance-based variable bandwidth kernel particle fil-
ter (CVBKPF). Each particle acquires the band-
width related to itself in the kernel density esti-
mation to improve the accuracy of kernel density
estimation. Although CVBKPF has a higher esti-
mated accuracy, there is still a process in which
the global bandwidth is solved by optimizing;
meanwhile, the particle’ s covariance matrix and
correlated processing increase the calculating cost
of the algorithm, so that the complexity of calcu-
lation is higher than that of KPF.

Based on Refs. [5,127], an algorithm of self-
adjusting bandwidth kernel particle filter (SABK-
PF) is proposed by combining the advantages of
KPF and variable bandwidth KPF. By means of
the particles’ own distribution characteristics, the
kernel bandwidth is regulated; meanwhile, the
kernel density estimation is used to update the
particle weight in the estimation so as to improve

the efficiency of system estimation.

2 Particle Filter

Assume that the state transition equation of
nonlinear dynamic system is as follows: x, =
f+(xp—1 svp—1) s where x, represents the status val-
ue of the target, function f,( « ) the target sys-
tem of state transition function, and v, the state
transition noise.

The observation equation of nonlinear dy-
namic system is as follows: z, = h, Capy up )
where z, represents the observation vector,
h,(C * ) the observation function of target system.,
and u, the state observation noise.

If {x}.,,wi} ¥, represents a series of random
, N} is a particle

samples, where {2, i=1,

collection, and {wj,i=1,++, N} the correspond-
N

ing weight, satisfying 2 w;=1; 2, ={x;,5=0,
i=1

<+, k} a set of all system states at the moment £,

and the system posteriori probability distribution

at the moment % is

p(ros | 200 &~ D wid(zo, —xh) (D

i=1
where §( ¢ ) is a Dirac-delta function. When the
number of particles N—>co increases, the theorem
of large numbers can ensure Eq. (1) to approxi-
mate the actual posterior probability distribu-
tiont"*,

It is difficult to directly obtain samples from
the posterior probability distribution, so the
Bayesian importance sampling theorem suggests
that the important density function of ¢(a,.,121..)
close to the posterior probability distribution is
used for sampling, the weight of the particle can

be expressed as

i P(l‘lo;/e | Z1.)

wy OC ot | i) (2)
In order to obtain a recursive method of pos-
teriori probability distribution, the important
density function can be decomposed into
q(xos | 210 =q(ay | 2012210 ¢(Xor | Z101)
(3
Then, by adding the new state of x, ~
q(xo.x | X015 2.4 ) to a known particle set of
-1 ~q(x0,4—1 |21,4—1)» the new particle collec-
tion of x},,~q(xy..|z1,,) is obtained.
According to Bayesian Rule and the proper-
ties of conditional probability, it is known
p(xos | 21.4) oC
Pz | ) plap | 2 pCao e | 211) (4
Egs. (3—4) are substituted into Eq. (2),
and the updating equation of weight can be ob-
tained

p(z, | 12)P<xz ‘ Xh1)

q(1‘2 ‘ X041 3%1,2)

i

W), OC Wi

(5

In practical engineering application, the prior
transition distribution is generally used as an im-
portant density function, i.e. q(x, | Zo.p1921.0) =
pCxy | 24—1), and then Eq. (5) is further simpli-
fied as

wi oc plz, | xp) (6)

3 Kernel Density Estimation

Kernel density estimation is a smooth non-

parametric density estimation method™”. Inde-
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pendent from prior knowledge of data distribu-
tion, it is a kind of method starting from sample
data themselves to study the characteristics of da-
ta distribution; therefore, in the statistical theory
and other related applications, it has received
high attention™.

Under one-dimensional circumstance, for a
group of sample sets of independent identical dis-
tribution consisting of N data {x;, =+, 2y}, at
any point x, the kernel density estimation is as
follows

Flo :ﬁgxh (x— )
where K, ( + ) is a bounded symmetric function,
called the kernel function, and A the kernel band-
width.

The accuracy of kernel density estimation is
mainly relevant to Parameter h, and has little to
do with the kernel function. The kernel band-
width A is a smooth parameter. To a certain ex-
tent, it reflects the balance relation of fitting de-
gree and smooth degree. If h is larger, the proba-
bility density function will have excessively
smooth peak; if 4 is smaller, the probability den-
sity function will lack smoothness in its tail, and
even cannot truthfully reflect the structural char-
acteristics of sample set”). Taking Gaussian ker-
nel as an example, Fig. 1 shows the influence of A

on the kernel function.
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Fig. 1 Bandwidth A& change in Gauss kernel function

In KPF, if the particles are relatively dense
in a certain section of interval, it is expected that
the small kernel bandwidth is used as far as possi-
ble to gather these particles, preventing the intro-
duced remote particles from raising the larger

smoothness error. When the particles are distrib-

uted sparsely, the larger kernel bandwidth can be
used to ensure the number of particles to fall into
the smooth bandwidth. Therefore, if a local ker-
nel bandwidth is designed for each particle instead
of directly using the global kernel bandwidth, the
strategy of a variable bandwidth can be used to
estimate the posteriori probability density.
According to the distribution characteristics
of samples, it can be known that when data val-
ues are concentrated, the standard variance has
smaller value; conversely, when data values are
dispersed, the standard variance value is larger.
It can be seen that the change of standard variance
meets the demand for kernel bandwidth in the
KPF; to a certain degree, it can be used as an in-
dicator of kernel bandwidth change. Therefore,
we use the standard variance of the system state
to adjust the kernel bandwidth, realizing the vari-
able bandwidth strategy that A is dynamically
changed according to the characteristics of particle
distribution. The corresponding density estima-
tion function is as follows
Flaag(ay,)) =
B
N+ ¢Cax0.0))

where ¢(x,,,) represents the standard variance of

N
ZK,,,%:& (xr—x60.) (1)

i=1

all the system states at the moment of k.

4 Self-Adjusting Bandwidth KPF

Based on the advantages of KPF and variable
bandwidth KPF, an improved algorithm of varia-
ble bandwidth KPF-SABKPF is proposed. Its
main idea is to substitute the kernel function for
the Dirac-delta function in the posteriori probabil-
ity distribution, to introduce the standard vari-
ance of particles in the bandwidth, and to dynam-
ically adjust the bandwidth according to the parti-
cle distribution characteristics, therefore, the
particle set can better reflect the posteriori proba-
bility distribution of the system model. Mean-
while, the kernel density estimation is used to
update the weight of the particle and to estimate
the system state.

Through the kernel density estimation, KPF
seeks the method of posteriori probability distri-
bution. Eq. (7) is substituted into Eq. (1), and
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then the kernel density estimation method of pos-
terior probability distribution is as follows

P (xou | 214) &
N

1 i ;
mgKh{mmﬂ (o Zo. ) wy (8)

where Ky, , ( * ) represents the kernel func-

0.k
tion, h+¢(x,,,) the bandwidth based on the par-
ticle standard variance. Considering the posteriori
probability density distribution has multimodali-
ty, the kernel function is taken as Gaussian ker-
nel in the algorithm.

Since the particle is different from the initial
position after the kernel density estimation, the
weight needs to be updated. The kernel density
estimation is adopted to update the weight value,
and Eq. (6) is changed as

- 1
< N(h + (/1(1‘0;,‘«))

Wp

N
E : i !

K/;ﬂ;(.rui,g (X — 0.8
=1

D)

To increase the diversity of particles, the al-

gorithm whitens the new particle set after re-sam-
pling, which is described as follows:

Step 1

(1) For i =1+ N, extract initial particles

Initialize £=0

{xf,w)}, w)=1/N from the prior probability

density function p(x,);

(2) Initialize parameter h: h =
4 1 . . )
((d+2)N)t+ , d is the dimension of the system;

Step 2 While £#<m, m is the number of it-
eration

(1) From initial status to the moment of %,
count standard variance of the system state
(0,0 3

(2) For i=1,++,N: According to Eq. (7),
move particles to obtain new particle set {x},} at
the moment of £;

(3) Whiten the particles;

@D Count C(k), which is the covariance ma-
trix of {x%};

@ Obtain whitening parameter A (k) from
the Cholesky decomposition on €(%), where A(k)
AT () =C(h);

® Sampl e( * )~N(0,I1,), I, is a d-dimen-

sional identity matrix;

@ zh=xp F(h+¢(xe)) « ACk) » e(k),
where A+ ¢ (x,,,) is the kernel bandwidth after
adjusting;

(4) For i=1,++,N: According to Eq. (9),
update the weight of particles to obtain new
weight value {wj} at the moment of k;

(5) According to Eq. (8), obtain the esti-

mation of the system state at the moment of
-~ -~ N -~ A .
kxy~plxo, lz,0) = 2xiwi;
=1

Step 3 k£=k+1, jump to Sept 2
5 Simulation Results and Analyses

SABKPF algorithm is compared with KPF
and CVBKPF filter algorithm to verify feasibility
and effectiveness of the algorithm'? by taking a
typical nonlinear system model as an example.
The system transition state equation and observa-
tion equation are as follows

a2, =1+ sin[0.04x(k—1)]+0.5x, 1 + vp
0.2x% + u, k< 30
F 050 — 2w k> 30

Among them, complying with the Gamma
distribution ¢, (3,2), v, represents the system
noise, and the measurement noise complies with
Gaussian distribution N(0,0. 000 01). In the ex-
periment, the number of particles used is N =
200, the observation time is T=60 s, and 100 in-
dependent experiments are conducted. The out-
put of the algorithm is the mean particle collec-

tion, and the calculation formula is as follows

1 N
=y ; )
The mean square error (MSE) of an independent

experiment is as follows

1w, - ,
MSE = (7; (2 —17k)‘>

Fig. 2 shows the state estimation results in

1/2

an independent experiment through the algorithm
of different-particle filter. It can be seen that at
some moment, the estimation generated through
KPF seriously deviates from the true data, but
the states estimated by CVBKPF and SABKPF
can be well in line with the true state, and the

CVBKPF algorithm has the idealest effect. Table
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1 shows the mean, the variance, and the running
time of the MSE of different KPF algorithms af-
ter 100 independent experiments. It can be seen
that the estimation accuracy of SABKPF is close
to that of CVBKPF, but its running time is down
more than 50% from that of CVBKPF, and the

arithmetic speed has been improved effectively.

1 |+ o True x
100, + KPF
9T & ~- CVBKPF
8 i s+ . +- SABKPF
AR a e W
B 6F i YL
= L B g% e
5 H ia D%
4r . TS |
3re 3 ‘* ey
21 s e
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Time /s
Fig. 2 State estimation of different KPF algorithms
Table 1 Comparison of estimation results of different KPF
algorithms after 100 independent experiments
) MSE )
Algorithm Time/s
Mean Var
KPF 0.433 31 0.046 613 1.188 3
CVBKPF 0.059 557  0.004 364 3 5.157 1
SABKPF 0.059 82  0.004 503 4 2.490 8

6 Conclusions

Kernel density estimation is facilitated to
seek for the posteriori probability distribution.
While

standard variance value of particle is used to ad-

ensuring the algorithm accuracy, the
just the bandwidth, so that the new particle col-
lection can be distributed in the whole space. The
approach can better reflect the posteriori proba-
bility density model, therefore, effectively reduce

the calculation complexity of the algorithm.
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