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Abstract: Part variation characterization is essential to analyze the variation propagation in flexible assemblies. Ai-
ming at two governing types of surface variation, warping and waviness, a comprehensive approach of geometric
covariance modeling based on hybrid polynomial approximation and spectrum analysis is proposed, which can for-
mulate the level and the correlation of surface variations accurately. Firstly, the form error data of compliant part
is acquired by CMM. Thereafter, a Fourier-Legendre polynomial decomposition is conducted and the error data are
approximated by a Legendre polynomial series. The weighting coefficient of each component is decided by least
square method for extracting the warping from the surface variation. Consequently, a geometrical covariance ex-
pression for warping deformation is established. Secondly, a Fourier-sinusoidal decomposition is utilized to approx-
imate the waviness from the residual error data. The spectrum is analyzed is to identify the frequency and the am-
plitude of error data. Thus, a geometrical covariance expression for the waviness is deduced. Thirdly, a compre-
hensive geometric covariance model for surface variation is developed by the combination the Legendre polynomials
with the sinusoidal polynomials. Finally, a group of L.-shape sheet metals is measured along a specific contour, and
the covariance of the profile errors is modeled by the proposed method. Thereafter, the result is compared with the
covariance from two other methods and the real data. The result shows that the proposed covariance model can
match the real surface error effectively and represents a tighter approximation error compared with the referred
methods.
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1 Introduction

Compliant thin-walled part is widely used in
the structures of automobile and aircraft. Because
of its large size, complex shape and weak stiff-
ness, compliant part tends to deform in the pha-
ses of forming, storage, shipment and assembly,
and the real shape of part will deviate from its
nominal position more or less. Moreover, the
part variation coupling with various tool varia-

tions will create a stream of variations which

propagate in flexible assemblies!™. Actually,
shape closure and force closure are both involved
in flexible assemblies. Shape variation of compli-
ant parts will introduce misalignments between
the mating parts. Therefore, the shape variation
of parts maybe results in the serious problems on
the ultimate assembly quality and function of
product. The importance of understanding the di-
mensional variation in flexible assemblies has
been widely recognized in the industries such as

automobile and aircraft manufacturing, and some
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issues including characterizing the compliant part
variation and formulating the dimensional rela-
tions of part variation, tool variation and the as-
sembly variation have become a popular research
topic. A systematic study regarding the dimen-
sional variation analysis in automobile assemblies
is conducted at the University of Michigan. In the

2] proposed a cantilever beam

early, Liu and Hu
model for the spot welding process and conducted
assembly variation predict using the Monte-Carlo
simulation. There are some disadvantages in the
cantilever beam model. The geometric structure
of part is oversimplified and a simple beam is in-
capable to represent a complex 3D structure. The
Monte-Carlo simulation is also time-consuming.
To overcome the above shortcomings, Liu and
Hu" introduced a linear elastic model by combi-
ning the finite element method and statistical a-
nalysis. Compared with Monte-Carlo simulation,
statistical finite element method (SFEM) is more
practical due to its high efficiency. Chang,et al™"’
proposed an approach to simulate the assembly
process and find the variation introduced into the
assembly based on the part stiffness matrix. Sell-
em,et al®™ combined the results of Liu and Chang
to develop a linear method that uses influence co-
efficients to find the wvariation of the parts.

17 studied the riveting process of air-

Zhang,et a
craft thin-wall structure, and a theoretical varia-
tion model of rivet shank and tail regarding the e-
lastic and plastic deformation was established and
validated by ABAQUS FEM simulation. Cheng.,
et al'”? investigated the positioning error of aero-
nautical thin-wall structures with the automated
riveter systems. In the method, the riveting
process is divided into two stages according to the
fixture changing, and positioning error is devel-
oped based on the mismatch error analysis. In
short, a lot of researches are conducted on the di-
mensional variation analysis in compliant assem-
blies. Hereinto, the part variation characteriza-
tion plays a key role.

Merkley!™ introduced the concepts of materi-

al covariance and geometric covariance for toler-

ance analysis of flexible assemblies. The material

covariance concerns the elastic deformation corre-
lation of compliant parts and can be referred as
the stiffness matrix of compliant parts often ob-
tained by finite element tools. The geometric co-
variance is related to the level and correlation of
original part variation, and a random Bezier curve
method is developed to represent the no-ideal part
profile. A major shortcoming of this method lies
in its ignorance of the error patterns specific to
part structure, forming process and materials.
Under the constraint of tolerance band, a general
random Bezier curve is used to define the relation
of points, and the covariance of control points is
only related to the curve order and parameter of
sample points instead of the coordinates of control
points. Thus, the covariance matrix of data
points only depends on their parameters, and has
nothing to do with the specific shape of curve. In
other word, the covariance model by the random
Bezier method ignores the inherent process-relat-
ed error characteristics of compliant part, and
merely utilizes the Bezier curve to guarantee the
geometric continuity of adjacent points. Later,

L) introduced a tolerance analysis meth-

Bihlmaier
od for flexible assemblies using spectral analysis,
in which the autocorrelation function is used in
frequency spectrum analysis to model random
surface variation, which is related to the specific
variation pattern. Stewart''® proposed a polyno-
mial-based model of geometric covariance for sur-

112 proposed a hybrid

face variation. Tonks,et a
model in which Legendre polynomials and average
auto spectrum were used to model the surface co-
variance with longer and shorter wavelengths re-
spectively. Unfortunately, these approaches are
far from perfection, and there still exist some de-
ficiencies or disadvantages. For example, the fre-
quency spectrum method works well in modeling
the surface waviness with shorter wavelengths,
but it is not applicable for model surface warping
with wavelength longer than the length of part.
The frequency spectrum method also supposes all
the surface points share the same standard devia-
tion, but it is inconsistent with the actual situa-

tion of variation. For the polynomial method, the
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order of polynomials must be less than the num-
ber of sample points. The polynomial method is
also incapable of formulating geometric covariance
of surface exhibiting sinusoidal variation. A pos-
sible solution to represent the geometric covari-
ance of surface variation is combing various types
of polynomials. In the supposed scenario, the ge-
ometric covariance of surface warping and wavi-
ness can be modeled by Legendre polynomials and
sinusoidal polynomials respectively. Unfortunate-
ly, the relevant research results do not reveal the
methodology of retrieving the weighting coeffi-
cients of each component in mixed polynomials.
In this paper, a comprehensive approach of
geometrical covariance modeling for surface varia-
tion of compliant part will be developed. Based on
Fourier polynomial theory, the approach com-
bines Legendre polynomials and sinusoidal poly-
nomials to approximate surface variation with di-
verse spectrum characteristics. In the approach,
surface warping and surface waviness will be fo-
cused on and represented by a series of mixed pol-
ynomials. Spectrum analysis will wherein be used
to acquire the frequency and the amplitude of sur-
face variation. A geometric covariance model re-
spects the continuity and statistical characteristics
of surface variation will ultimately be established

in a comprehensive way.

2 SFEM of Tolerance Analysis and
Geometrical Covariance Modeling

2.1 SFEM of tolerance analysis in flexible assem-
blies

To study the elastic deformation of compliant
parts subject to forces, the finite element method
is widely used to analyze the dimensional variation
in flexible assemblies'*). Basically, a typical as-
sembly process can be divided into four phases by
finite element method: Parts positioning, fixtures
clamping, fastening and fixtures release, as seen
in Fig. 1. According to the hypothesis of small
linear elastic deformation. a linear relation can be
deduced between the initial mating gaps J, »d, and

assembly variation 8. based on the relation of clos-

ing forces F,, F, , and spring-back reaction force

F The linear elastic solution for dimensional

variation analysis for flexible assemblies is illus-

trated as follows

F,=K, - 6., (D
F, =K, + 9§, (2
F.=—(F,+F,) (3)
5.=K,'+F. €Y

6. =K'« (K, 0, +K,5,) (5)

where K, ,K, and K, are respectively the stiffness
matrixes of Part a , Part b and Assembly ¢. The
mating gaps d, » &, and §. are the synthetic result
of part variations, position variations and clam-
ping variations, and these variants are regarded as
the input variations of flexible assembly by the fi-
nite element method. This model focuses on the

approach of characterizing the surface variations

of parts.
1 1)
. ¥ 4O F, i *F A
Parta } K Part b Part a Part b
(a) Parts positioning (b) Fixtures clamping
Parta Part b

(c) Fastening

(d) Fixtures release

Fig. 1 Decomposition of flexible assembly process

The linear model as Eq. (5) enables an in-
sight into the dimensional variation in flexible as-
semblies from a statistical viewpoint. In the
SFEMM*1%) | the mean and variance of dimension-
al variations to parts and assemblies are specially
analyzed. The SFEM provides a high efficient lin-
ear algorithm to predict the mean and variance of
assembly variation directly from the mean and va-
riance of parts or tools variations. The mean is

expressed as Eq. (6)

pe =K' o (K, +Kyuy) (6)
The variance is expressed as Eq. (7)
2[ :K:1 * (KMZUK(I JFK/;Z/;K/;)KTI D

where p;(i=a,b,c) denotes the mean of part vari-
ations and assembly variation at the mating
points, 3,(i =a,b,c) the geometric covariance of
parts variations and assembly variation at the

mating points. For a compliant part, under the
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constraint of geometric continuity, variations of
points on surface within a tolerance zone are cor-
related to each other, and the correlation of varia-
tions within a part surface is closely related to the

distribution of assembly variation.

2.2  Geometric covariance modeling by hybrid

polynomials approximating

Certain polynomials maybe specialize in de-
scribing one class of shapes. Unfortunately, the
surface variations of compliant parts usually in-
volve complicated shape characteristics. A hybrid
polynomials representation can be effective, in
which various types of polynomials are adopted to
approximate the surface variations with different
multi-frequency domain characteristics. The pro-
duced polynomial model shares the same vari-
ances at sampling points, but establishes a speci-
fied correlation among these points. Generally,
an orthogonal polynomial series will be chosen
and used as the basis functions in a generalized
Fourier series. The hybrid polynomial approxi-
mation provides a powerful tool to model the
complicated surface variation.

Firstly, considering a random and uncorre-
lated point set f(x;) , i=1,+,n , it can be trans-
formed into a correlated point set f(x;) " ,i=1,
«=,n , by applying a transformation matrix S. It
is determined by the discrete Fourier decomposi-
tion of the actual profile on surface

flx)" =8« f(x) (8)

The actual profile on surface builds the cor-
relation of surface variation at sampling points.
As illustrated in Fig. 2, P,{Py
Py {Py

of a profile in which each point moves within a

i:l’...’n} .

i=1,,n) are two sampling point sets

tolerance zone. The points in Py are uncorrelated,
while the points in group P, are correlated due to
the constraint of surface geometric continuity.
Thecorrelation of the points can be defined by a

covariance matrix.

Tolerance
bound

Fig. 2 Correlation of sampling points

Then, based on the statistical theory, an e-
quation can be deduced regarding the covariance
of the correlated points f(z;)* [

Xo=cov(f(x;))")=8+cov(f(x;)) + 8" (9
where X is the geometric covariance matrix of re-
al profile variation relative to the ideal profile,
which reflects the geometric continuity and statis-
tical characteristics of surface variation. Because
the sampling points are independent variants, Eq.
(9) can be rewritten as

X, =S+A-§" (10
where A is a diagonal matrix and its diagonal ele-
ments are equal to the value of variances of the
sampling points. In practice, the variances can be

acquired by the designated tolerance.

3 Methodology

3.1 Geometric covariance modeling by hybrid
polynomial approximation and spectrum

analysis

The overall methodology for geometric co-

variance modeling is illustrated in Fig. 3.

| Real profile sampling: P |
| Variance of samping points: A |

!}

| Profile variation on surface: V' |
y Decomposition of surface variation

L]

Surface waviness: 7,
* Sinusoidal polynomial series
cos2nfi(x) (=0, 1, =+, M)
» Weighing coefficients for typi-

Surface warping: V,
 Legendre polynomial series
P(x) (=0, 1, -, L)
» Weighting coefficients of

components: cal frequency:
Least square method Spectrum analysis method
(=0, 1, L) By (K0, 1, -+, M)

* Transformation matrix:Four-
ier-sinusoidal decomposition S
geometrical covariance

X =S, A S

* Transformation matrix: Four-
ier-Legendre decomposition S,
geometrical covariance

2=, A Sl;
I

|
{ Combination of surface variation

Hybrid geometric covariance model for surface variation

* The weighting coefficients of combinations: ¥ =w, Zitw, X,
distortion domains comparative analysis

Fig. 3 Methodology of geometric covariance modeling

Above all, the key profile on surface is se-
lected to be sampled by discrete points (often by
CMM or optical sensor). It should be noted that
there are some regular patterns for the surface

variation of compliant parts with similar struc-
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tures or by a similar forming process. Therefore,
the empirical data and model established by
process experiments beforehand can be reliable
and applicable for the future use. This fact is the
foothold and significance of our research. It is
critical to determine the diagonal matrix A and the
transformation matrix S in the geometric covari-
ance modeling. The diagonal elements of A can be
statistically acquired if the experimental data are
available, or be set by the tolerance band. In
practice, a standard deviation is assumed to be
one third the tolerance band. Coefficient matrix S
is determined by the Fourier-Lengendre and Fou-
rier-sinusoidal decomposition of the profile varia-
tion. Subsequently, the profile containing surface
variation information will be approximated by hy-
brid polynomials.

According to the ratio p of part length L and
variation wavelength A, the surface variation can
be decomposed into three basic modes™™ . (i)
Surface warping ( p << 1); (ii) Surface waviness
(1 <<p=<5);

Surface warping and surface waviness are focused

(iii) Surface roughness (p > 5).

in this research because they play the major role
in the formation of dimensional variation in flexi-
ble assemblies. Generally, the amplitude of sur-
face roughness is much smaller, and its contribu-
tion to the ultimate assembly variation can be
neglected. The types of polynomials are carefully
selected according to their capacities in shape rep-

Legendre poly-
[11]
b

resentation of profile variations.
nomials are good at depicting surface warping
and the weighting coefficients of components in a
Legendre polynomial series, a, » will be acquired
by least square method. Furthermore, geometric
covariance model for warping deformation is es-
tablished by the method of Legendre polynomial
decomposition and approximation. Subsequently,
sinusoidal polynomials are chosen to represent the
surface waviness. The weighting coefficients of
components with different frequencies in a sinu-
soidal polynomial series, a;..om s Will be obtained
by spectrum analysis. As a result, the geometric
covariance model for surface waviness is devel-

oped. Finally, a hybrid geometric covariance

model of surface variation is developed by com-
bing the results of surface warping and surface
waviness. The weighting coefficients of warping
and waviness, w, and w, . are determined by the

comparative analysis of distortion domains.

3.2 Covariance modeling for warping by Legendre

polynomials approximating

1) will be identified
firstly and formulated by a series of Legendre pol-

Surface warping (p <<

ynomials. The transformation matrix Sy, is solved
by the Fourier-Legendre decomposition''*
The correlation of the sampling points on

surface profile can be expressed by a Fourier-Leg-

S /21+1P,(r VP () + flx)
l[ 0

(11)
Therefore, the transformation matrix S, is calcu-

lated by Eq. (12)

Sk = Zaz /2[+1P1(1 P, () (12)

where N is the number of the sampling points,

endre series

flx)”

J

the order of the Legendre polynomial, a, the
weighting coefficient of the [ -order Legendre pol-
ynomial. This weighting coefficient can be calcu-
lated by least squares approximation. In this re-
search, a Legendre polynomial series with the in-
creasing order to three is chosen, which exhibits

excellent flexibility in modeling surface warping.

Po(l‘l) Pl(l‘1> P'_)(l‘l)

230

PQ(«T]') Pl(.Tj) Pg(Tj)
Pg(le) P(Il)
a| o= (13)
P.(z)| [P

In Eq. (13), P,(x;) is the [ -order Legendre poly-
nomial, P(x;) the combination of Legendre poly-
nomials of the first four orders. The profile data
is fitted by Legendre polynomials of increasing or-
der, subtracting each successive polynomial fit.
The weighting coefficient of polynomial of each

order is solved by least squares method, as fol-
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lows
N

Af/:Z%[f(l‘,-)—azP,(lﬂ,-)]Z (14)

j=1

where f(x,) is the i-th sampling point on the real
profile, Af, the error function of least squares
method. There exists a set of solutions for a, to
minimize the value Af, .

The transformation matrix Sy, can be calcu-
lated by Eq. (12), and the variance matrix A is
also available. The geometric covariance for sur-
face warping can be written as Eq. (15)

X, =S, A -S| (15)
3.3 Covariance modeling for waviness by sinu-
soidal polynomials approximating and spec-

trum analysis

Surface waviness ( 1<Cp<C5) will be approx-
imated by sinusoidal polynomials of increasing or-
der, and the transformation matrix S5 can be ac-
decomposi-

quired by the Fourier-sinusoidal

tion™"™,
The correlation of the sampling points can be

expressed by Fourier-sinusoidal series as Eq. (16)

N M 2 2 f
FCD" =30 20N @rmamcos va LG =D fa)

01 k=0

(16)
The transformation matrix Ss is calculated by
Eq. (17)

M
2 ZTEfk . .
Ss.; = \/jag,mrmcos ~(j— 1)
iy ; N N

M
Qf.norm — ak/ kZ;ak (17)

In Eq. (17), N is the number of sampling points,

f the frequency of the sinusoidal polynomial, a,
the weighting coefficient of the sinusoidal polyno-
mial with the specified frequency.

The frequency information is difficult to ac-
quire directly from the variation signal subtrac-
ting the Legendre polynomial fit. The method of
solving the weighting coefficients in the Legendre
polynomials approximating is not applicable here.
Alternately, a spectrum analysis method is pro-
posed according to the characteristics of surface
waviness.

The discrete sampling points indicating sur-

face variation can be viewed and treated as dis-

crete digital signals. Fourier analysis/®

plays a
very important role in discrete signal analysis,
and provides a powerful tool to map the time do-
main analysis mode to frequency domain analysis
mode. A variety of fast algorithms are available
for discrete Fourier transform, which greatly im-
prove the real-time and convenience properties of
digital signal processing. This section will discuss
the spectrum analysis of surface variation by fast
Fourier transform (FFT) algorithm based on the
Matlab toolbox™*,

As shown in Fig. 4, the spectrograms of a
superposition signal from the sampling points.
The signal is stacked by various sinusoidal signals
with different frequencies. The frequency and
amplitude information is revealed by the spectro-
gram, and the weighting coefficient of each basis
function can be determined. In this case, the pro-
file variation is stacked by four kinds of sinusoidal
polynomials with different frequencies, f,, f.. f;
and f,, and the weighting coefficients are depic-
ted by Eq. (18)

k
a,.:AZ/EA,, i=1,2,3,4 (18)
i=1

where A, is the wave amplitude with the frequency

™

S -
wn O
T
-2
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W b
S O
T

14,4, A,

]
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T

o

=
(=]

Amplitude/mm
g . .
>

Amplitude/10
-
S
=

(=]

0 1 2 0L LS S 40
Distance/mm Frequency/(no. of cycles/length)
(a) Variation of profile (b) Amplitude-frequency chart

Fig.4 Spectrum analysis by FFT

In the spectrum analysis by FFT, there are
two key points: (i) Frequency leakage; (ii) Fre-
quency resolutions. By FFT, the original signal is
truncated by window functions. For a component
of particular frequency, without an integral wave-
length in the sampling window, the method will
produce a large distortion. In such case, the ener-
gy that should focus on a particular frequency is
scattered to the nearby frequency domain and pro-
duced frequency leakage™. Therefore, there will

be serious frequency leakage for surface warping
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whose wavelength is longer than the part length.
That is why the spectrum analysis is not applica-
ble when calculating the weighting coefficients of
surface warping. Actually, the frequency leakage
of warping can lead to a serious interference for
the subsequent spectrum analysis of surface wavi-
ness. The component in waviness signal whose
amplitude is small may be overwhelmed by leak-
age signal of warping. This problem is skillfully
solved in this paper by separating the warping
signal from the whole surface variation by the
Legendre polynomial approximation. Thus, the
spectrum analysis method is applicable to acquire
the weighting coefficients of each component in
surface waviness. The frequency resolution re-
flects the identification capacity between adjacent
frequencies in FFT. When a key profile on sur-
face is sampled at a sampling rate lower than two
times of the maximum frequency in this profile,
some frequency information must be lost in the
spectrogram of spectrum analysis. Fig. 5 illus-
trates two different results of spectrum analyses
for the same profile at different sampling rates.
The lower sampling rate can not distinguish the
adjacent frequency. In our research, a method of
high frequency sampling rate is adopted to im-

prove the quality of spectrum analysis.

Higher sampling rate
Lower sampling rate

o
e
=]
8

S
Q

=t

=
=
g
=0

10 15 20 25 30
Frequency (No. of cycles/length)

Fig.5 Spectrogram with different frequency resolutions
In this way, the weighting coefficients of
each component in a sinusoidal polynomial series
can be achieved by spectrum analysis. The geo-
metric covariance matrix by the sinusoidal poly-
nomial approximating is written as Eq. (19)
X =S8s+A S a9y
3.4 Hybrid geometric covariance model for sur-

face variation

Surface variation in the flexible components

can be classified as three types, warping, wavi-
ness and roughness. In this paper., only the
effects of surface warping and surface waviness
are concerned in the synthesis of surface devia-
tion, because surface roughness has little to do
with the macroscopic dimensional variation in
flexible assemblies. A hybrid covariance model of
surface variation is developed by combing the geo-
metric models of surface warping and surface
waviness linearly. The geometric covariance ma-
trix of surface variation, X; , is expressed as
Eq. (20)

Yo =w, * Xs tw, « Xy

L 0

where a , b is respectively the variation band of

(20)

waviness and warping. Since surface warping and
waviness is already decomposed, the weights pa-
rameters [, and /, can be solved by the comparative
analysis of distortion domain of the two compo-

nents, as shown in Fig. 6.

Warping
1Aul

=
=i
g
a
—
i
(e
=}
m

Fig. 6 Comparative analysis of distortion domain

2D

where y,, the upper limit of waviness, y; the low-

Zu - ‘yul — Y ‘ ’ l/, = ‘yuZ — Ve

er limit of waviness, y, the upper limit of war-

ping, v, the lower limit of warping.
4 Verification

In this section, the proposed method is veri-
fied by a case study. As shown in Fig. 7, the pro-
file data at the assembly mating section are col-
lected by CMM from a group of aluminum-alloy
The thickness of these
parts is 1 mm, and the profile length of the part

L-shape sheet metals.

is 150 mm, and 150 sampling points are equally

selected for each part.
The profile data are collected by CMM from
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Scanning direction
Probe of CMM

Z

Locator ]

(b) Setup of measurement

(a) Profile sampling

Fig. 7 Profile measurement plan of sheet metals

six pieces of parts, shown in Fig. 8(a). The pro-
file data include both the random and non-random
components. The non-random component in-
volves the dimensional information of the nominal
position and the mean errors. The random com-
ponent reflects the profile errors deviating from
the mean position. The geometric covariance of
compliant sheet metals is modeled based on the
random component, the random profile errors are
shown in Fig. 8 (b). The geometric covariance
model of surface variation is established by the
proposed methodology. The curves of random
profile errors are approximated by a hybrid Leg-
endre and sinusoidal polynomial series, and the
weighting coefficients of basis functions are deter-
mined based on the least squares method and the
spectrum analysis.

As shown in Fig. 9, the random profile er-
rors are decomposed into warping and waviness.
The error curves are firstly fitted by O-order
through 3-order Legendre polynomial consecu-

tively, and the weighting coefficients of the basis

Profile data / mm

50 100
Distance / mm
(a) Profile data

g
g
—~
)
=
o
g
[}
Q
—
3]
o
=
o
g
[=}
=]
=]
<
[~

50 100
Distance / mm
(b) Random profile errors

Fig. 8 Surface variation collected by CMM

Random errors
Waviness
Warping

50
Distance/mm
(a) Decomposition of random errors

0 order
1 order
2 order
3 order

Height/mm

50 100 150
Distance/mm
gendre polynomials

Fig. 9 Legendre polynomials approximation of warping

functions are calculated by the least squares
method, and the weighting coefficients and their
mean values for theses profiles are shown in
Table 1.
warping is established by Eqgs. (12,15).

The geometric covariance model for

Table 1 Weighting coefficients of Legendre polynomials

Weight CV.1 CV.2 CV.3 CV.4 CV.5 CV.6 Mean

a 0.142 0.042 0.013 0.048 0.061 0.069 0.063
a; 0.607 0.506 0.704 0.661 0.248 0.790 0.586
a, 0.239 0.281 0.055 0.278 0.511 0.086 0.242
as 0.012 0.172 0.230 0.012 0.180 0.055 0.109

Subsequently, the residual errors of surface
variation are approximated by a sinusoidal poly-
nomial series. As shown in Fig. 10, the spectrum
analysis is conducted. The high-frequency compo-
nents in the errors are viewed as surface rough-
ness and filtered out directly. The after-filtered
components are formulated by a sinusoidal poly-
nomial series. The weighting coefficients can be
acquired based on the amplitude-frequency curve
in Fig. 10. The weighting coefficients and fre-
quencies of the six profiles are shown in Table 2.
Therefore, the geometric covariance model for
waviness is set up by Eqs. (17,19).

Subsequently, the results of the above poly-
nomial approximating are combined, and a hybrid
polynomial series is used to model the overall sur-

face variation. By the comparative analysis of dis-
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by Eq. (20).

Random errors

Waviness
Table 3 Mixed weighting coefficients of surface warping and

surface waviness

Errors / mm

Weight CV.1 CV.2 CV.3 CV.4 CV.5 CV.6 Mean

L L w,,
50 L (Sinuso- 0. 143 0.177 0.234 0.189 0.256 0.193 0.199
Distance / mm .

(a) Errors and waviness idaD)

x,, 1,(1.750, 1.68) w,
x,, ¥,(3.125, 1.00) (Legen- 0. 0.823 0.766 0.811 0.744 0.807
x,, y5(4.375, 1.10) dre)

x,, ¥4(5.250, 1.09)

Amplitude / mm

The variance matrices by the proposed meth-

'00 T )Icg:g 10 15 20 od and the real data are illustrated as Fig. 12. The

Frequency (no. of cycles/length) height of histogram is proportional to the magni-
(b) Amplitude-frequency chart . . .
tude of covariance, which reflects the correlation
Fig. 10  Spectrum analysis of surface waviness . . .
level of the sampling points. Figs. 12 (a,b) de-

0.8 Random errors note the geometric covariance matrices by the

Waviness

Warping proposed method and the statistical data respec-
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0.0
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Distance / mm

(a) Decomposition of random errors

Errors / mm

Covariance

0.8F
. 0.698
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0.0 (a) Covariance by proposed method
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Errors / mm
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Distance / mm
(b) Domain analysis

Fig. 11 Comparative analysis of distortion domains

Covariance

Table 2 Frequencies and weighting coefficients of sinusoidal
polynomials 20
. 40
O . 40
20 . ae®
2, A<
% 60 o™
(b) Covariance by real data
A1,norm
fo 3.125 3.05 3. > 2.85 2.90 0.010
0.005
0.000
-0.005
-0.010
-0.015

A2, norm

fs  4.375 4.125 4.05 4.35

Point index

as,norm 2 Z 0.187 0.159
S 5.125 4.95 4.75

A4 norm
-0.020
10 20 30 40 50 60

Point index
and warping, [, and [, , are listed in Table 3. (c) Covariance matrix comparison

tortion domains, the variation bands of waviness

Consequently. the comprehensive geometric co- Fig. 12 Comparative analysis of covariance matrix with

variance model for surface variation is developed statistical data
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tively. Fig. 12(c) illustrates the plotted errors of
covariance matrices between the two results. It
reveals the proposed model can tightly fit the real
statistical covariance of the real parts, with the
maximum error 0. 02 (relative error 14%) and
the average error 0. 004 (relative error 2. 8%). It
is also observed the geometric covariance model
approximated the shape of statistical covariance
matrix very well.

Furthermore, comparison analysis of covari-
ance with two other methods is conducted to veri-
of

Fig. 13(a) denotes the covariance matrix formula-

fy the advantages the proposed method.

ted by the orthogonal polynomial method"? and

Point index

(]
Q
=|
<
=
<
=
Q
©

60 3 20 30 40
Point index

50 60

(a) Covariance comparison by orthogonal polynomial method

Covariance

the plotted errors of covariance matrices between
the orthogonal polynomial method and the real
data. The maximum error is 0. 02 (relative error
rate 14 %) and the average error is 0. 006 (relative
error rate 4, 2%). Fig. 13 (b) denotes the covari-
ance matrix solved by the hybrid method™ and
the plotted errors of covariance matrices between
the hybrid method and the real data. The maxi-
mum error is 0. 02 (relative error rate 14%) and
the average error is 0. 007 (relative error rate
4.9%). According to the comparison analysis, it
can be concluded our method represents a better
approximation to the real data, with a minimum

average error.

Point index

20 X ode*

Qo 10 20 30 40 50 60

Point index

(b) Covariance comparison by hybrid model

Fig. 13 Comparative analysis of covariance matrix with other methods

5 Conclusions

For the statistical tolerance analysis in flexi-
ble assemblies, surface variation modeling for
compliant parts is full of challenging. A flexible
framework of geometric covariance modeling is
proposed, in which warp and waviness are decom-
posed from the overall surface variation and dealt
by the different schemes. A covariance model for
surface warping is built based on the lLegendre
polynomial approximation. In a similar way, a
covariance for surface waviness is established
based on the sinusoidal polynomial approximation
and spectrum analysis. Finally, a comprehensive
geometric covariance representation of surface
variation is developed by combing the two kinds
of covariance models. The feasibility and advan-
tages of this approach have been verified by a case
study.

The presented framework is universal and

extensible. In future work, a knowledge base in-

cluding a variety of geometric covariance models

for typical structures and manufacturing process
should be established by specific process experi-
ments, and can further be used in the dimensional

quality prediction in new product development.
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