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Abstract; The forward kinematics of the general Stewart mechanism is studied and a fast numerical method is pres-
ented. Quaternion is utilized to model the forward kinematics and the equations are merely a system of quadratic
ones. The numerical method is a nice simplification of the Newton-Raphson method when applied to this system.

A simulation of the movement control of the Stewart mechanism is accomplished, confirming the effectiveness of

the proposed algorithm in real-time conditions.

Key words: forward kinematics; Stewart mechanism; quaternion

CLC number: TP242 Document code: A

1 Introduction

Stewart mechanism (also named as Stewart
platform) is a kind of parallel kinematic struc-
tures, consisting of one upper platform (mobile
platform), a lower one (base) and six parallel
rods. Each rod is able to stretch out and draw
back freely. These two platforms are connected
via six such rods with spherical joints at the high-
er positions and universal joints at the lower posi-
tions. The base is stationary and fixed to the
ground. The rods have an in-built mechanism
that allows changing the length of each individual
one. The desired position and orientation of the
mobile platform are achieved by changing the
lengths of the six rods independently, that is to
say, the six transitional degrees of {reedom are
transformed into three positional and three orient-
ational ones. Compared with the serial mecha-
nism, it has some inherent advantages. In detail,
it possesses a greater stiffness-to-mass ratio,

higher base {requencies, which enable it to with-
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stand a relatively large load. In addition, it pos-
sesses stronger dynamic performance and stability
and higher precision of movement, making it
competent for precise tasks. Since it was pro-
posed in 1965, its kinematics, singularity, work-
space and dexterity, dynamics, control and struc-
tural design have been researched in depth and ex-
tensively. Nowadays large quantities of the mech-
anism have been widely used in systems of motion
simulation, micro-displacement positioning de-
vices, visualizing haptic devices, industrial and
medical robots, telescopes and other aspects.
Although many advantages of the Stewart
mechanism make it an ideal solution to some spe-
cial applications such as the machining center and
radio telescopes, it is real difficult to find the sta-
ble solution of the kinematics with a low calcula-
tion error and time consuming due to its high de-
gree of coupling. The inverse kinematics problem
for the Stewart platform is defined as to find a se-

ries of rod lengths according to the desired pose
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(position and orientation) of the moving plat-
form. The solution to this problem is indeed not
at all complex and can be computed in a very
short time because the mathematical expression
of every rod length is independent to each other.
Furthermore, the computation of length for each
rod can be carried out independently in parallel,
which can additionally speed up the process. On
the other hand, there is no closed-form solution
for the forward kinematics problem of the general
Stewart mechanism™, which is defined as to find
the position and orientation of the mobile plat-
form while the rod lengths are known. Moreo-
ver, the fast solution to forward kinematics plays
a most important and significant role on the feed-
back control and analysis of singularity and work-
space. Thus, a fast numerical solution to the for-
ward kinematics problem is a challenging puzzle
in the research field of the parallel mechanisms.
There are two categories of methods to solve
the forward kinematics problem: Analytical
methods and numerical methods. In the aspect of
analytical methods, a number of researchers use
algebraic formulations to generate a high degree
of polynomial or a set of nonlinear equations and
focus on finding all the possible roots to the equa-
tions by means of algebraic elimination, continua-
tion, interval analysis and so on'**). They have
made some progress and those solutions are called
assembly modes of the Stewart mechanism. Un-
fortunately, the variables representing the pose of
the mobile platform have not been expressed in

69] " Moreover, finding all

explicit forms so far
possible solutions is not completely solving the
forward kinematics problem. We still need some
schemes to determine a unique actual pose among
all the possible solutions, which is required for
practical applications. In some cases, use of aux-
iliary sensors is one commonly adopted scheme to

L1 - But such an

further lead to a unique solution
approach is limited in practical applications due to
the expensive price and measurement errors.
Then in the aspect of numerical methods, there
exists a widely used method named as Newton-

Raphson method. Nonlinear algebraic equations

can be linearized and transformed into linear equa-
tions via this method. If the iterative initial value
that we choose is located in the domain of conver-
gence, we can obtain the exact solution™*'J,
Some scholars use neural network algorithm to
obtain the initial guess required for Newton-
Raphson algorithm to ensure the stability of
it"""!. The unique solution can also be obtained by
making use of the optimization algorithm such as
network algo-

genetic algorithm and neural

L2t - However, both the genetic algorithm

rithm
and neural network algorithm take much more
time so that they are not very suitable for real-
time applications.

The complexity of the forward kinematics
problem depends widely on the configuration, the
geometrical size and the sensor layout of the
Stewart mechanism. Although some promising
results have been achieved for certain simplified
configuration such as usage of composite spherical

). the pursuit

joints and parallel layout of joints
of practical algorithms for the general Stewart
mechanism has universal significance and should
be continued. Moreover, it is difficult to enable
the Stewart platform meet the needs of high-
speed and real-time engineering applications just
by several exiting numerical algorithms. The pa-
per is a contribution of the problem since the goal
is to study the general Stewart mechanism and
presents an improved Newton-Raphson method

that can satisfy the requirement of real-time ap-

plications.

2 Forward Kinematics Based On

Quaternion

The forward kinematic equations can be ex-
pressed as a variety of mathematically equivalent
forms. Every representation of the equations has
its advantages and disadvantages which become
emphasized when a kind of numerical algorithm is
applied. By taking quaternions instead of Euler
angles, direction cosine matrices or spinors as ro-
tational coordinates to describe the pose, the for-

ward kinematic equations are mere a set of quad-
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ratic polynomial ones.

2.1 Representation of rotation using unit quater-
nion

In the three-dimensional vector space, the
orientation of the fixed-point rotation of a rigid
body can be expressed by RESO(3). SO(3) is a
group that meets the rule of matrix multiplication
and defined as SO(3) ={RER***.RR"=1I,detR=
4135, R is a linear operator determined by the
rotation axis which is defined by a unit vector n
and its amplitude w. When it is necessary to spec-
ify these elements, the rotation is denoted as the
operator R(w,n).

As shown in Fig. 1, any vector x can be de-
composed into a sum of two mutually perpendicu-
lar parts. One is parallel to the vector n and the
other is perpendicular to n

x=xe.mn+mXxXx)Xn QD)

Due to the vector n, nXx and (nXx) Xn are
orthogonal to each other, after a rotation the vec-
tor x will be

R(x)=(x*mn+R[(nXx)Xn]=(x+*n)n+
(nXx)sinw+[ (nXx) Xn]cosw (2)

By using the radial and transversal decompo-
sition Eq. (1), Eq. (2) can be written as the well-
known Euler-Rodrigues formula

R(x)=xF+nmXx)sinw+[nXnX
x) J(1—cosw) (3)

-3 (x*n)n

(nXx)Xn

(n X x)sino+[(n X x) X n]cos®

Fig. 1 Rotation of vector

Now let us consider the set R* X R, whose
element is a pair made of a scalar ¢, and a vector
q. It is expressed as g=(q.q,) = (q, g, q; qo) or
q=q it q,j Tt q;k+q,, with the special rule that

*2

iP=j'=k’=—1, ij=—ji=k, jk=—kj=i and

ki=—ik=j. Therefore, the law of composition
(g P)>qp={qpT+poqtqXp.qpo—q=+p; (4D
is bilinear of ¢ and p. It is easy to verify that the
composition operation is associative but not com-
mutative since it involves a cross product. All of
these characteristics make R’ X R an associative
algebra. The set R X R endowed with this kind
of structure is designated as @, whose elements
are called quaternions. And the mapping (g, p)—
qp is called the product of ¢ to the right by p (or
the product of p to the left by ¢). The compo-
nents q and g, of a quaternion are considered as
its imaginary part Im(g) and its real part Re(q)
respectively. Unlike complex numbers (in which
the imaginary part of x=x+1iy is the real number
v), the imaginary part of ¢ is effectively a vector
in R,

The quaternion ¢ = (— ¢q, q,) is called the
conjugate of g=(q,q,). It means that the conju-
gate of a quaternion ¢ is formed by reversing the
sign of its imaginary component. It is denoted as
g. The mapping ¢—>¢ is an automorphism of the

vector space Q, but an antiautomorphism of the

algebra structure as ﬁ:'ﬁ& for any ¢ and p. In
addition, quaternions are measurable in the vector
space @ because
qq=qq=C|| Re(g) [|*+ [ Im(g) || *,0) =
[ Re() | *+ || Im(q) || * (5

is a sum of two positive numbers. Therefore, it

makes sense to define the norm of a quaternion as
the scalar || ¢ || = +/qgq. Obviously, | ¢ | =0 if

and only if ¢=0. Furthermore, for any quaterni-

on g and p
I pq |1 2= Cp) (pd) = (pg) (qp) = p(qq) p=

o) lal*=1pl*lql* (6)
The formula gq¢=gg= | ¢ || * has an impor-

tant consequence. It exhibits explicitly the in-
verse of a nonzero quaternion, namely ¢ ' =
q/ ¢l ?s ¢g740. The means Q is a division ring
or skew field, an algebraic structure with all the
properties of a field except commutativity. Of a
quaternion ¢ such that | ¢ | =1, it is said that it
is a unit quaternion. Although the set Q itself is

not a group because the quaternion 0 has no mul-
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tiplicative inverse, the set E={q¢€ Q]| || ¢ || =1}
of unit quaternions is a group. It is not empty:
1€E. If g€ E, so does ¢q. In fact, g is just the in-
verse of q. If p and ¢ &€ Q. so does their product
pq. 1t should be noted that the group E is not
commutative,

The aim of this subsection is to show that E
is intimately related to the group SO(3) of rota-
tions in R?. In the following content, we will do-
nate the unit quaternion as e = (g,¢e)) = (e, €, €;
€ ).

To represent a rotation with the unit quater-
nion g, a theorem is introduced here. Let Re(e)
=cos(w/2) and Im(e) =nsin(w/2), where n is a
unit vector. For any x € R*, the product exe be-
longs to R*. Moreover, the application x—exe : R?
—R? is identical to the rotation R(w,n). The the-

orem can be proved by calculating that

— L@ an W, G Y
ex—(xcos 2Jr(n><x)s1n 2 ,(—n + x)sin 2)

exéZ{(x cnm)n+ (nXx)sinw+[ (nXx) X

n]COSw’O} 7

Eq. (7) is consistent with Eq. (2). Note that
both ¢ and — ¢ determine the same transforma-
tion, which is related to the appearance of the
half angle /2. Computationally, it is now an
easy matter to use unit quaternions to model rota-
tions. More exciting discussion about quaternions

could be found in Refs. [23—24].
2.2 Forward kinematics equations

For a general Stewart mechanism we assume
two reference frames separately fixed to the mo-
bile platform and the base. The frame fixed to the
mobile platform is called the moving coordinate
frame and denoted as O-z"y 2. The remaining
one is called the static coordinate frame and deno-
ted as O-xyz. The position vectors (also known

as location vectors or radius vectors), which de-

| h|l?+2(hXg) « B,+2A, - (soh—iu)s)Jr%(Af[—

termine the position of every spherical joint rela-
tive to O-x"y'z’, are denoted as a,, **+ ,as. And
the position vectors, which determine the position
of every universal joint with respect to O-xyz,
are denoted as b, , **+ ,b;. The position and orien-
tation of O-x"y’z" relative to O-ryz are denoted
as P and R respectively. Now we get six equations
as follows
Le;,=P-+Ra,—b, i=1,-.,6 (8)
where the length of the rod 7 is denoted as L; and
e;, the unit vector in R’, represents the orienta-
tion of the rod ¢ with respect to O-xyz. Consid-
ering Eq. (7), Eq. (8) can be extended and ex-
pressed in E
L;Ce;0)=(P,0)+ela,,00e—(b;,0)
i=1,+,6 €D
By making the product to the right with ¢ for
Eq. (9), we get
L.(e;s0)e=(P,0)e+e(a;,0)—(b;,0)e
i=1,,6 (10)
which can be written in the simplified form as
Lifi=h+e(a;,0)—(b;,0)e i=1,-+,6 (1D
when we assume f; = (e;, 0)e € E and h =
(P,0)e=(ecP—eXP,—g+ P)EQ.

If we calculate a product to the right by its

conjugate quaternion I/J\,?, then we will obtain
that
L= n|*+2Re{hleCa; ;00— (b, ,0)e]+
(a;,0)e » (b;s0)e} +a; » a;+b; b,
i=1,:-,6 12)
To achieve a further simplified form we arti-
— b, and B, =a; +b,,
whose coordinate representations are (A, A,
A )Tand (B, B, B.)". We define L=(L, L, L,
L,L; L))" and h= (h" ,hy) = (hy hy hy hy) sh E
R’. Eq. (12) can be transformed into the follow-

ficially define that A, = a;

ing equations

AL =B 4B (e —ed) 5 (AL —B2) (261 —¢i —

Eg ) +2€08 * (Bf ><Ai ) +2€1€2 (A;riAyt _B‘z'iByi ) +2€2€3 (AyiA;i _Bny 2 ) +2€1 €3 (Af,A:i _B‘ziB:i ) +%(Brz -

A (=) + L (AT FB)—LI=0 i=1,w.6

(13)
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The left side of Eq. (13) can be succinctly

written as

fi(x):%xTQixfC,‘ i=1,-,6 (14

Q}. =
A —2AL —B+2B, —2A,A,+2B,B, —2A,A.+2B,B.
—2A,A, +2B,B,, A*—2A,—B:+2B. —2A,A.+2B.B.
—2A,A,.+2B,B.  —2A,A.+2B,B. A'—2AL—B+2B
2A.B,—2A,B.  —2A.B,+2A.B.  2A,B.—2A.B,
0 —2B, 2B,

2B, 0 —2B,

—2B, 2B, 0

2A,, 24, 2A..

Q. is a constant symmetric matrix only deter-
mined by the structural parameters of the Stewart
mechanism.
Additionally, there exit two more equations

according to the properties of quaternions

f1(x) =¢el +ef +€f +ef —1=0

Js(x) =¢e hy +eshy +e3h; +echy =0
f7(x) and f5(x) can be expressed in the same
form as Eq. (14)

15

21, O
f'7<x>:ixT( )x—l
2 0 04><-1
0 I (16)
. 1+ [YVixa
I (x)=—x‘< )x
’ 2 I 0.,

The unknown x can be changed into study
coordinates, a dual quaternion or a biquaternion
by a linear transformation. In this way Eqgs. (14,
16) will have a little change but the quadratic
form is unchanged.

Eqgs. (13,15) constitute eight quadratic poly-
nomial equations, by dealing with which we will
obtain the solution to the forward kinematics

problem.

3 Fast Forward Kinematics Method
3.1 Construction of iterative sequence
For any of Egs. (13,15), if let a,b €& R®,

then
fita)—f;,(b)=b"Q;(a—b)+
%(a_b)TQ,'(a_b> izlv"'sg a7
We assume x* € R® is a real solution to those
quadratic equations and that x, € R® is an approx-

imation of x“. In Eq. (17) we plugina=x", b=
X,s Ax=x" —x, and omit (Ax"Q,Ax)/2 which is

where x = (e, &, &5 €0 by hy hs ho)'s C, =L —

%(A?vLB?),i:l,---,G, and

2A.B,,—2A,B. 0  2B. —2B,

—2A.B, T2A.B. —2B. 0 2B, 2A

24,

ges

iy

2A,B,, —2A,. B, 2B,  —2B, 0 24
—AP+B —2A. —2A, —2A. O
—24, —9 0 0 0
—24, 0 —2 0 0
—2A, 0 0 —2 0

0 0 0 0 —2

the second-order trace of Ax. In the geometric
sense it means replacing the quadric surface with
the tangent plane at x;. Since f;(x*)=0, we will
get

—filx)=x 0, (x" —x,) i=1,-,8 18>

Therefore, we get the iterative sequence
written as
X1 =0(x)=x,—J,'F(x,) k£=0,1,2,-+ (19)
where J, = (x'Q; x"Q, -+ x"Qs)" and F (x,) =
(Fr(x) folx) e folxg)T.

Eq. (19) is the general form of Newton-
Raphson method. Furthermore, the method can
be simplified nicely when applied to a system of
quadratic equations.

Considering the following relationship be-

tween F(x,) and J,
F(xk):%.]kxk —C

C=(C, C, - C; 1 07 (20)
We eliminate J, 'F (x,) in Eq. (19) and the
iterative function can be expressed in such a form

as
@(xu:%xk +Ji'c @D

Now it need not to calculate F(x,) in each step of
iteration, which saves some computation and is
essential for real-time applications. Since calcu-
lating the inverse of J, is time-consuming, we re-
place it with solving a system of linear equations
with a numerical method in the actual calculation

and adopt the following iterative sequence

1
X = —x, + Ax,
Jﬁ“ 2™ L r=0,1.2,  (22)

leAxk =C
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3.2 Convergence: singularity and initial guess

It is well known that Newton-Raphson meth-
od converges quadratically as long as the Jacobian
matrix of the system is nonsingular and the initial
guess is close enough to a solution.

When the Jacobian matrix is singular or near
singularities, the iterative solution can jump far
from the local solution and fail to converge or
converge to a different solution. To avoid the sit-
uation, we make a bit change in Eq. (22). We
have known that if J, is replaced by a constant
matrix J, in Eq. (22), the resulting iterative se-
quence converges linearly and the Jacobian matrix
will not become singular during iterations. This
kind of iterative method is named as simplified
Newton-Raphson method.

Now we combine the general Newton-Raph-
son method with the simplified Newton-Raphson
method. If we predict the Jacobian matrix J, is
very close to singularity during the iteration of
step k, the simplified Newton-Raphson method is

used in this step

X+ :lxk -+ Ax,
2 (23)

Ji1Ax, =C

Many characteristics can help to judge the
singularity of the Jacobian matrix, such as the
large condition number, the small determinant,
and the large change of Ax,. Obviously, we cal-
culate the change of Ax, since it costs less time
than the other two ways. In the next iteration we
return back to Eq. (22). In this way we avoid the
singularity at the expense of a little computing
time.

How to choose the initial guess is also very
important. According to the local convergence

(251, there exists a neighborhood of x*

theorem
denoted as S; ={x€R®| || x* —x || <8}, where
Eq. (22) will converge to x* with at least square
convergence for any initial guess x, € S;.

On the other hand, the rod length L is a con-
tinuous function of x, so that there exists a
neighborhood of the actual L* denoted as T, =
{LER*| |L" —L| <t} and if LET,, x€ S,.

Thus, the change of the pose of the mobile plat-

form should stay in the permitted range by con-
trolling the change of the rod lengths. In general
applications when the mobile platform moves con-
tinuously at a given requirement, the rod lengths
change over time continuously. L is a time-de-
pendent function denoted as L(z). With time ran-
ging from ¢, to t, we divide the time segment
At=t—1, into several pieces called the control cy-
cles. During each cycle the pose of the mobile
platform is figured out by Eq. (22) where the ini-
tial value of Eq. (22) is the result calculated in
the previous cycle. All of these processes help to

ensure the convergence of the iterative sequence.

4 Numerical Simulation

The algorithm derived in Section 3 is applica-
ble to a general Stewart mechanism with any con-
figuration. Without loss of generality, a kind of
Stewart mechanism with the common configura-
tion, where the universal joints and spherical
joints are distributed symmetrically in two circles
as shown in Fig. 2, is used as an example to verify

the effectiveness of the algorithm.

2’ Moving coordinate frame
Spherical joint

Fig. 2 Commonly used Stewart mechanism

The coordinate presentations of the vectors
that describe the connecting positions of two plat-

forms with six rods are expressed as follows
2, . K
cos(3 (i 1)+12)

@ri1 = sin(zg—“u— D+ i=1.2.3

0
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cos(%i*%>
a, = Sin(fi*%) 1=1,2,3
0
cos(%r(ifl)Jr%)
bia =2 sin(%<i—1>+%) (= s
0
i)
by =2 sin(—z—%) i=1,2,3
0

In dynamic simulation, the starting pose of
Stewart mechanism is known and serves as the in-
itial value of the algorithm. During each sampling
period T the algorithm searches for the new solu-
tion, which becomes the initial guess in the next
cycle. The movement is defined as a time-depend-
ent function of the pose of the mobile platform.
The position is denoted by the vector P and the
orientation is denoted by the unit quaternion e,

therefore, the movement can be define with

.
me (o. 1sin “7[0. 12sin %Zl+0. 1551nt>

ls(t) =nsin ZLcos &

2 2
012 (24)
where w = Z sin (2%¢t), n= (siny * cosaesiny ¢
~ _om ks om
singcosy ), y = 15 Sin <2nt+2 ) + 12° @

27nsin(2xt). The starting pose of the mobile plat-
form is P(t=0)=(0 0 1)" and e (t =0) =
(000 T,

The sampling period T is set as 1 ms, which
equals a 1 000 Hz sampling frequency. We make
a dynamic simulation of 1 000 ms. The machine
precision of the computer is set as 16. Obviously,
we will get different calculation accuracies with
different times of iterations.

The curves shown in Figs. 3,4 represent the
absolute difference between the calculated and the
actual poses with 10 times of iterations. Due to

the large number of cycles, the calculation error

is defined as the largest absolute difference in the
last 100 ms, therefore, the graphs in each point
show the worst case in the last 100 ms of the sim-
ulation. The errors are presented separately for
positions and orientations of the mobile platform.
Fig. 5 shows the influence of the times of itera-
tions on calculation accuracy. If we take 10 times
of iterations, we will get a calculation error of
3.11X10"". And we get an error of 1.46X10"7
for 2 iterations. With the number of iterations
greater than 4, the error magnitude downs to
1071,

because it is restricted to the machine precision

It cannot go smaller with more iterations

which is set as 16. In real-time applications, we

can choose the times of iterations based on the re-

.5
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quired precision.

We have attempted a kind of widely used al-
gorithm "FindRoot” provided by a software-Wolf-
ram Mathematica 9. 0 to solve the forward kine-
matics equations with a classic form, where the

Euler angles are used to describe the rotation,

and find that our new algorithm saves 43. 92%
computing time with 5 times of iteration as
showed in Tables 1, 2. The initial guess in Table
2 is just the result in Table 1. Our new algorithm
costs 0. 352 562 ms while the Mathematica' s

method costs 0. 628 684 ms.

Table 1 One process of our new algorithm
Time of New algorithm
iteration . & €5 & h hy hs ho
0 0 0 0 1 0 0 1 0
1 0.041 007 2 0.014 5348 0.014 534 8 1 0.084 32 0.011 93 1.6328  0.017 208 3
2 0.027 148 3 0.009 628 32 —0.017 216 1 0.999 545 0.086 4624 0.011 0712  1.506 41 0.023 464
3 0.026 024 2 0.009 181 15 —0.017 2174 0.999 472 0.086 692 6 0.010 7696  1.500 92  0.023 499 1
4 0.026 0197 0.009 179 05 —0.017 2174 0.999 471  0.086 695 0.010 7672  1.5009  0.023 499 4
5 0.026 0197 0.009 179 05 —0.017 2174 0.999 471  0.086 695 0.010 7672  1.5009  0.023 499 4
Table 2 Another process of our new algorithm
Time of New algorithm
iteration . & €5 & h hy hs ho
0 0.026 0197 0.009 179 05 —0.017 2174 0.999 471  0.086 695  0.010 767 2 1.5009  0.023 499 4
1 0.018 6025 0.014 436 3 —0.017 1414 0.999 617 0.002 625 63 —0.002 192 54 1.099 75  0.019 365 8
2 0.017 197 8 0.017 456 7 —0.017 1424 0.999 558 0.002 282 73 —0.002 162 39 1.023 14  0.017 546 1
3 0.017 142 6 0.017 750 6 —0.017 1425 0.999 549 0.002 227 51 —0.002 162 72 1.020 24  0.017 497 7
4 0.017 1426 0.017 7516 —0.017 1426 0.999 548 0.002 227 16 —0.002 162 72 1.020 24  0.017 497 6
5 0.017 1426 0.017 7516 —0.017 1426 0.999 548 0.002 227 16 —0.002 162 72 1.020 24  0.017 497 6

5 Conclusions machine precision of the computer.

The numerical algorithm has the advantage

The property of quaternion is studied to de- of high accuracy and fast convergence speed that

scribe the three-dimensional rotation and model are sorely required for real-time applications. It

the forward kinematics of the general Stewart can be applied in the feedback motion control of

mechanism. The forward kinematics equations the Stewart mechanism to achieve the multiple in-

are expressed as a system of quadratic equations put multiple output control based on task space,

with a simple and symmetric form. Newton- which will improve the control precision. Such an

Raphson method simplifies nicely when applies to approach and the algorithm may be extended to

this system, which is good for the real-time con- other kinds of mechanisms.

trol.
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