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Abstract; To learn from evolutionary experimental data points effectively, an evolutionary Gaussian mixture model
based on constraint consistency (EGMM) is proposed and the corresponding method of parameter optimization is
presented. Here, the Gaussian mixture model (GMM) is adopted to describe the data points, and the differences
between the posterior probabilities of pairwise points under the current parameters are introduced to measure the
temporal smoothness. Then, parameter optimization of EGMM can be realized by evolutionary clustering. Com-
pared with most of the existing data analysis methods by evolutionary clustering, both the whole features and indi-
vidual differences of data points are considered in the clustering framework of EGMM. It decreases the algorithm
sensitivity to noises and increases the robustness of evaluated parameters. Experimental result shows that the clus-
tering sequence really reflects the shift of data distribution, and the proposed algorithm can provide better cluste-
ring quality and temporal smoothness.
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1 Introduction

Clustering analysis is one of the most impor-
tant methods of data prediction and data analysis
in the field of machine learning and data min-
ing"®. According to measured or perceived in-
trinsic characteristics, the data set is partitioned
into several clusters by the clustering algorithm,
where the data points from the same cluster
should be similar as much as possible, and the da-
ta points from the different clusters should be dis-
similar™. In general, data clustering has been
used for the following three main purposes: dis-
closing the underlying structure of data set, reali-

zing the natural classification of data points, and
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organizing the data or summarizing the data

through cluster prototypes™!.

Essentially, the
above applications are used to find the potential
patterns or data structure by clustering.

The conventional clustering algorithms focus
on static data set, and assume that all data obey
an underlying distribution which will not evolve

[5]

along time However, there are some that ap-

plications, such as dynamic social network™*’,

blog communitiest and moving objects track-

ing'", where the size of dataset or the data dis-

tribution may drift along time due to concept drif-

[5.11]

ting or noise varying . In this case, the poten-

tial patterns implicated in dynamic data set cannot
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be accurately analyzed by using conventional clus-
tering algorithms.

Evolutionary clustering is an extended appli-
cation of clustering analysis. Its main purpose is
to disclose the inherent patterns of data set and
the evolutionary characteristic of evolving data-
sets. The existing evolutionary clustering algo-
rithms typically outperform conventional static
clustering algorithms by adding a temporal
smoothness penalty to the cost function'’?’. The
result of evolutionary clustering is a sequence of
clustering in a time-line. For the clustering result
produced during a particular timestamp, two cri-
teria including high snapshot quality and low his-
tory cost, should be met. This means that the se-
quence of clustering should have high-quality
clustering at the current timestamp, and meet
temporal smoothness in the successive times-
tamp'®’. Now, several frameworks of evolution-
ary clustering have been proposed™ . Evolu-
tionary k-means, proposed by Chakrabarti, et al
is the first framework of evolutionary clustering.
This framework adopts the objective function of
k-means as the function of snapshot quality and
the differences between all pairs of centroids in
successive timestamp as the penalty of history
cost. Its main weak point is that the stability of
clustering cannot be guaranteed. As a result, the
small perturbation on the centroids may cause

[11]

drastic changes of clusters Based on spectral

[ proposed the other

clustering, Yun Chi, et al
two frameworks of evolutionary spectral cluste-
ring, namely, preserving cluster quality (PCQ)
and preserving cluster membership (PCM),
where two different measure strategies of tempo-
ral smoothness were integrated in the overall
measure of clustering quality. In the PCQ frame-
work, the current partition is applied to historic
data and the resulting cluster quality determine

In the PCM

framework, the current partition is directly com-

the temporal smoothness cost.

pared with the historic partitions and the resul-
ting differences determine the temporal smooth-
ness cost. From the measure strategy of history

cost, PCQ is similar to evolutionary k-means, but

PCM adopts the similar idea of constrained cluste-
ring™!?,

Penalized likelihood is often used to learn the
parameters of Gaussian mixture model (GMM)
and has been used in regression analysis, classifi-
cation and clustering etc. In the field of machine

and Kullback-

Leibler divergence are the main measure strate-

learning, conditional entropy

gies used to evaluate the differences of informa-

1) By introducing mani-

tion and distributions
fold learning into parameters evaluation of GMM,
Laplacian regularized Gaussian mixture model
(LapGMM) was proposed by He, et al''™, Ac-
cording to the idea of LapGMM, the nearby data
points along the geodesics on the manifold have
the similar conditional probability density func-
tions. Based on the assumption, Laplacian regu-
larization is defined to penalize the likelihood
function and the conditional probability distribu-
tion of the nearby data points can be smoothened.
Based on the similar idea, locally consistent
Gaussian mixture model (LCGMM) was pro-
posed by Liu, et al'**!, where locally consistent
assumption was adopted.

To most of the existing evolutionary clus-
tering algorithms, the overall properties of data
points between the corresponding clusters in suc-
cessive timestamps are integrated into the defini-
tion of history cost function. This is beneficial to
avoid the obvious fluctuation from the noise data

pointsH¥1l,

However, the individual differences
between data points are ignored. In fact, the dif-
ferent data points may have different effects on
the evolutionary clustering when the data distri-
LapGMM  and

LCGMM, evolutionary Gaussian mixture model

butions drift. Inspired by
based on constraint consistency (EGMM) is pro-
posed from the point of view of constrained clus-
tering. Using GMM as the model of data descrip-
tion, the snapshot quality function of EGMM is
defined by means of the log-likelihood of complete
data set, and the history cost function of EGMM
is defined according to the differences between the
posterior distributions. These distributions de-

scribe the statistic characteristics of all pairwise
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data points, which have the same cluster labels in

the previous clustering results.

2 Notations and Related Work

The research objective of evolutionary cluste-
ring is to cluster the dynamic datasets, whereas
evolutionary clustering also relates to the other
research fields, such as data stream clustering,
incremental clustering and constrained cluste-

13197 In this section, evolutionary k-means

ring
and evolutionary spectral clustering will be intro-
duced based on the unified forms of notation rep-
resentation. Evolutionary k-means is the first
framework of evolutionary clustering, and the re-
lation between evolutionary and constrained clus-
tering has been firstly described in the framework

of evolutionary spectral clustering.
2.1 Definition of notations

To obtain the smooth clustering sequence,
the clustering results and data distributions at t—
1 timestamp should be integrated into the cluste-
ring process at ¢ timestamp. So, the subscripts,
namely "/ and "t —1”, represent the correspond-
ing information at ¢ and t— 1 timstamps., respec-
tively. Let X, = {x,.;}"=, denote the data set at ¢
timestamp, where n represents the number of da-
ta points. Correspondingly, let X,_ |, denote the
data set at t—1 timestamp. The current data set
consists of X,pw and X,oos namely X, =
Xioew U Xicoy » where X,y denotes the newly
increased data set at ¢ timestamp and X,q de-
notes the joint data set at z and £—1 timestamps.
As the subset of X,, X, may include all or part
of X,—1, namely X, 0 & X,—,. This includes the
following two cases. If X, = X,—,, it means
that all data points at t— 1 timestamp will appear
at ¢ timestamp. Otherwise, only part of data
points at ¢t — 1 timestamp will appear at ¢ times-
tamp, namely X, & X,—;. Among them, the
former can be regarded as a special form of the
latter case.

Assume that K, represents the number of

cluster, and MC, = {#,.k}f the set of centroids,

t
=1

where g, is the centroid of the kth cluster and

the subscript “” represents the ¢ timestamp. We
also use C,,, to represent the data set of the kth
cluster at ¢ timestamp. Correspondingly, we as-

K
{pte1.w 1=} represents the set

sume that MC, = |

of centroids at t—1 timestamp, where p, 1., de-
notes the centroid of the £'th cluster and K,_, re-
presents the number of cluster at + — 1 times-
tamp. The notation of C,—, » is used to represent
the data set of the £ th cluster at the 7/—1 times-

tamp.
2.2 Evolutionary k-means

As the first framework of evolutionary clus-
tering, the object of evolutionary k-means is evol-
ving data points. Its goal is to obtain a smooth
clustering sequence. In the framework, the clus-
tering differences between adjacent time-stamps
are measured by history cost function, denoted as
he(MC,, MC,—, ), and the clustering quality of
current data points is measured by the function of
snapshot quality, denoted as sq(MC,). By mini-
mizing the objective function Eq. (1), the cluste-
ring sequence with the optimal clustering quality
can be guaranteed by performing the algorithm of

evolutionary k-means'"*).

T T
min »)sq(MC,) — A+ > he(MC,,MC, ;) (1)

t=1 t=2
where A is the tradeoff parameter of clustering
quality and history cost defined by user.
On the online setting, the objective function
of evolution k-means can be described
Jexkw = min sq(MC,) — 2 « he(MC, ,MC, )
(2)
where the objective function of standard k-means
13]

is the snapshot quality function-"*", namely

K/
sqMC) =minY) > [ x.—pl?
k 6(‘/\

In the framework of evolutionary k-means,
history cost is measured by the distance sum of
the pair of centroids, where the most similar two
clusters are respectively from the adjacent time-
stamps and the distance between the two cen-
troids is the shortest. Let f; MC,—~MC,_, be the
mapping defined in the set of centroids. These

centroids are either from ¢ or t — 1 timestamp.
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Then, u,—1. s € MC,- denotes the centroid that is
the nearest centroid at the t— 1 timestamp from
W... . Thatis to say, for all u,—, , € MC,_,, the e-
quation of d (s spbi—1.5) =min d (s s, 1) 1s
true, where the notation of d( * ) represents the
Euclidean distance between two clusters. So, the
pair of clusters, namely C,—, ;4 and C, . are the

most similar clusters. The history cost function

of evolutionary k-means can be defined as
Eq. (D!
he(MC,, .MC,) =
K[
/;M(‘r/nj;\r/ll(‘ 2 H e — R, 5o H : 4

=1 k=1

The algorithm of evolutionary k-means runs
in an iterative manner adopted by standard k-
means. Eq. (5) is the updating formula of cen-
troids. Its essence is to adjust the position of
cluster centers at current timestamp using the
historic centroids, where the corresponding his-
toric cluster is the most similar to the current
cluster. Then, the cluster centers at ¢ timestamp
will lie in between the centroids suggested by
standard k-means and its closest match from the
previous timestamp. With this mechanism, the
better clustering quality and smooth clustering
sequence can be guaranteed.
Pow = —7) e X ety + 7
A= > x. (5

%, €0, ,
where y= | Ci.e ‘ /( ‘ Ci ‘ + ‘ Cz*l.f(k) ‘ ) s ‘ Ci. ‘
denotes the data number in C,, and |C,— s | de-
notes the data number in C,—, ;.

History cost in evolutionary k-means is
measured by the distance between each of the pair
of centroids at ¢ timestamp to its nearest peer at
t—1 timestamp. The sum of distance between all
pairs of centroids is smaller, the differences of
clustering results between adjacent timestamps
are smaller too. Such a strategy of history cost
has three weak points. First, the cluster number
must be the same at adjacent timestamps. How-
ever, the dynamic data set will drift along time,
this may cause the change of distributions. With
in-depth understanding of the user, the concept

may evolve too. These situations may result in

changes of cluster number. Second, history cost
is measured in the distance between the corre-
sponding centroids. When the position of centroid
changes slightly, the history cost may change
drastically. This will affect the stability of cluste-

ring resultst® 111,

In addition, only the overall
differences of data points at adjacent timestamps
are considered, but the different effects from in-
dividual data points are ignored during the process

of evolutionary clustering.

2.3 Evolutionary spectral clustering
Since the clustering results of evolutionary k-

means is not stable, two frameworks of evolu-

tionary spectral clustering, namely PCQ and

PCM, were proposed by Chi, et al"'?,

ure temporal smoothness, two different fitting

To meas-

methods are adopted, including the one indicating
how the current clustering results are consistent
with the characteristics of historic data points or
the historic clustering resultst**7,

Assume that V ={v,}? | represents the set of
n vertices, W is the matrix used to describe the
similarity of all vertices in V', and {C,}i_, repre-
sents a partition of the vertices in V', where K de-
notes the number of clusters. The partition of the
vertices in V can be represented as a n-by-K ma-
trix Z whose elements are in {0, 1}, where
ZU,pp=1(Ci=1,,n; k=1,-,K) if only if
vertex v; is partitioned to cluster C,. Because ma-

trix Z is an orthogonal matrix, matrix Z can be

normalized in the following way: matrix Z can be
obtained by dividing the kth column of Z, where
|C,| represents the number of vertices in cluster
C,. On this basis, the negated average associa-

tion, denoted as NA, can be defined as

NA = tr(W) — tr(Z'WZ) (6)
where tr( « ) represents the trace of matrix. As-
sume that W, and W,_, represent the vertex simi-
larity matrix at ¢ and ¢ — 1 timestamps, respec-
tively, then the total cost function of PCQ can be
defined as Eq. (7)1

Jrcq =Atr(W,) — tr(ZTWl Z,)) +

A—0r W, ) — tr(ZIW, , 7)) =
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trQW, + (1 —DOW,) —

(ZEOW, + (1 —DW, ) Z) 0
where A (0<CA<C1) is the tradeoff parameter of

clustering quality and history cost defined by us-

er, and Z, is the representation matrix of the par-
tition at ¢ timestamp.

For the objective function of PCQ. the first
term, namely tr(AW, +(1—21) W,_,), is a con-
stant, which is independent of the clustering parti-
tions, minimizing Eq. (7) is equivalent to maxi-
mizing the second term of the objective function.
Directly solving the objective function of PCQ is
an NP-hard problem. Similar to most spectral
clustering methods, one solution is to relax ma-
trix Z, to projection matrix X, € R"”*, where the
element values of Z, are discrete and the element
values of X, are continuous. Then, the problem
of maximizing matrix trace is converted into sol-
ving the K eigenvectors associated with the top-K
eigenvalues of matrix AW, +(1—2x) W,_,. In the
framework of PCQ, the current clustering result
is used to fit the historic data points to guarantee
temporal smoothness, so the vertex similarity
matrixes of the current time-stamp and the previ-
ous timestamp are contained in the objective func-
tion simultaneously. The algorithm steps of PCQ
is similar to the general spectral clustering, ex-
cept that the weighted sum of matrixes W, and
W,_, must be calculated when using eigenvectors
to construct the projection space of data points.

Unlike the PCQ model, PCM uses the differ-
ences of partitions between adjacent timestamps
to guarantee temporal smoothness. To achieve

this goal, the representation matrixes, including

Z,and Z, , , are relaxed to two projection matri-
xes X, € R and X, , € R, respectively,
whose elements are continuous. Then, the differ-

ences between two projection matrixes are norm.
. 1 . .

dlST(X, ’thl ) :? H XzXzI _Xzlele H 2 €]

Furthermore, the total cost function of PCM

can be defined as Eq. (9)*
Jeew =2+ (r(W,) — tr(X;/W.X,)) +

%(1—/1) C XXT—X XD, =

Aetr(W) 4+ (1 —2) « K—tr(X] QW, +
A—-—0X . X"DHX) 9
Similar to the PCQ model, PCM has the
same steps of algorithm with the general spectral
clustering., but the different matrixes are used
during the process of constructing projection
space by calculating the eigenvectors. By solving
the K eigenvectors associated with the top-K
eigenvalues of matrix AW, +(1—1) X, , X, " to
construct a vector space, the data points are pro-
jected into the space and evolutionary spectral
clustering can be realized. Because the partition
differences between adjacent timestamps need be
compared, the projection matrix at the 7 times-
tamp includes the partition information from the
projection matrix at the ¢z — 1 timestamp in the

framework of PCM.

3 Model of EGMM

3.1 Gaussian mixture model

To effectively deal with the evolving data set
generated from independent and identically dis-
tributed (IID) samples from one underlying dis-
tribution, we can assume that all data points at
each timestamp are from special distributions of
GMM. Thus, from the perspective of model-
based clustering, evolutionary clustering becomes
a mixture-density parameter estimation problem
of dynamic GMM. We assume that the data set
X, = {x,:} is generated from the parametric
GMM model, where n is the data number of X,.
The probabilistic model can be defined as Eq.
(10

K

/)(xz.i ‘ @/) - Eﬂz.}s])/.k(x1.{ ‘ 01.)1)

k=1
Kt

St mu =05 k=1,+.K, and > m.,=1
k=1

(10)
where x,.; denotes the i th data point at the ¢ time-
stamp, @, = {1y K, 0 Oryseees 61,Kr } the pa-
rameter set of GMM, K, the expected number of

clusters at ¢ timestamp, as well as the number of
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Gaussian components of GMM, zx,, the priori
probability of data points which represents the
weight of the kth Gaussian component; and
poi(x,:10,.) a probability density function pa-
rameterized by parameter 0,, = {p,.»X%...) } » here,
W +X,., represent the mean and covariance matri-
xes of the corresponding Gaussian component,
respectively.

In evolutionary clustering scenario, the data
point at the ¢ timestamp should appear with the
greatest probability in the current model from the
perspective of model-based clustering. This
method can guarantee the better clustering quality
to be obtained. Simultaneously, from the per-
spective of constrained clustering, pair of data
points, generated from the same Gaussian com-
ponent at the t— 1 timestamp, should be parti-
tioned into the same cluster with the greatest
probability under the current parameters of
GMM. This strategy will produce a smooth clus-
tering sequence. In EGMM, better clustering
quality can be obtained through the maximization
likelihood method, and smaller history cost can
be guaranteed depending on the adjustment of
regularization operator. Regarding the clustering
results at the z—1 timestamp as prior, the regu-
larization operator can be defined to adjust the pa-
rameters estimations of EGMM at the ¢ times-
tamp. As a result, the pair of data points meeting

a prior constraint can be assigned the same cluster

with a greater probability.
3.2 Snapshot quality function

Assume that Y,={y, )=, is the set of unob-
served data, whose values inform us which com-
ponent density "generated” each data in X,. That
is to say, y,, € {1,+,K,} represents that each
data points x,,; is generated from the y, ;th Gauss-
ian component. Thus, log-likelihood function of
complete data set, namely log (L(O,|X,,Y,)),
can be defined as™"
log(L(O, | X,,Y,))=log(P(X,.Y, | ®))=

D dogriap i (X0 | 6,.00) (1D
=1

Essentially, the expectation of log-likelihood

should be maximized to realize the evolutionary

clustering in EGMM. The clustering quality at
the ¢t timestamp depends on the values of parame-
ters estimations by maximizing the log-likeli-
hood. Therefore, in Eq. (12) the expectation of
log(L (@, | X,,Y,)) is the function of snapshot
quality of EGMM, where ®&¢ represents the cur-
rent parameters of EGMM at the ¢ timestamp and
0%, the parameters of the kth Gaussian component
at current iteration step. Correspondingly, the
notations of x,, and 0, represent the parameters
of the kth Gaussian component, which will be up-
dated at current iteration step.

sqeemm (0,) = E (log(P(X,,Y, | ) | X,,0%) =

n

K[
E Z (1087T1.k + logp1.k<x1.i ‘611\“)> M

i=1 k=1

pCk | x50 (12)
3.3 History cost function

Assume that Z, (x,. ;) and Z,_, (x,.;) repre-
sent the cluster assignment at ¢ and t— 1 time-
Z[—l (x,.j) iS

true, we can say that pairwise data points, deno-

stamps respectively. If Z,_, (x,;) =

ted as (x,,,» x,, ;). are generated from the same
Gaussian distribution. According to the idea of
constrained clustering, all pairwise data points
can be regard as a prior knowledge at the ¢ time-
stamp to smoothen the clustering. Such knowl-
edge shows that pairwise data points, namely
(x,;» x,;), may meet the constraints of "must
link”. This means that for each x,., x,.; € X, »
pairwise data points (x,,.x,,;) should satisfy the
constraint of "must link” if x,;, x,; € C,_ . is
true. Thus, C, ,.y becomes the data set com-
posed of pairwise data points. Since the equation
X,y = C,, ¢ 1is true, the other equation M, =
X, oy Will be true, where M, is the constraints set
of "must link”.

Assume that evolutionary data set obeys the
IID assumption, and each data point of X, is sam-
pled according to the marginal distribution of
Gaussian component. Since the correlation be-
tween marginal distribution and conditional distri-
bution is based on the assumption of cluster con-
sistency, if pairwise data points (x,,;, x,,;) meet

the constraint of "must link”, the corresponding
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conditional distribution of x,; and x, ;, i.e. , p(k|
X, -0¢) and p(k| x,,;.0%), should be a great sim-

2 For simplicity, we use p,; (k) and

ilarity
p..; (k) as the substitutes for p(k | x,,,0¢) and
pC(k| x.;s @), respectively. To measure the

difference between p,; (k) and p,; (k), we use

b(Pz.,(k) | p..;(£)) defined in Eq. (13) as a sub-
stitute for Kullback-Leibler (KL) divergencel®

Do || pry (B =%(D(p,,1(/e) | pos (B +

DCp.; G || poi (D)) (13)
In Eq. (14), D(p,; (k) || p..; (k) represents
the KL divergence about p,.; (k) and p,; (A"

o Pt
DCpust) |l s () = 21 (W) log 203
(14)

To smoothen the results of evolutionary clus-
tering, pairwise data points that have the same
cluster labels at the + — 1 timestamp should be

partitioned into the same group as much as possi-

ble. To realize the goals D (p., (&) || p.; (k) de-
fined in Eq. (13), is used to measure the differ-
ences between posterior distributions of pairwise
data points during the process of evaluating pa-

rameters of EGMM. Intuitively. if (x,,, x, ;) €

M, . the value of D ( p,; (k) || p,,(k)) should be
smaller, which can smoothen the corresponding
posterior distributions and increase the probabili-
ty that x,; and x,; are assigned to the same
Gaussian component at the ¢z timestamp. Thus.,
the cluster labels of all pairwise data points in M,
can be used as constraint information. Then we
define the function of history cost in Eq. (15). It
minimizes the differences of posterior distribu-
tions of pairwise data points in M,, and leads to
the end that constraint violation occurs with a
minimal probability in the estimation model at the
t timestamp.

hegeuu (MC -, ,MC,) =

K’ ~
D DD | puy (B =

(x, ;ox, DEM, k=1

K!
% SV SN DG B | pis () +

(x, %, D EM, k=1

D(p.; () || pri(R))) (15)

3.4 Objective function

According to Eqgs. (12, 15), the objective
function of EGMM can be defined as
Jeomum = SqecMM (@) — A« hegoun (MC -, ,MC,) =

n KI
>0 (logm.k + logp..(x..; | a.n) .

i=1 k=1

oy A,
])(k | xm"el.k) 2

Kl
ST DG B | iy ()

(x, ; .x[VJ)GM/ k=1

DCpoy (k) || pi (kD)) (16)
As an alternative form of KL divergence,

i)( po:(R) | p.;(k)) is nonnegative too. Maxi-
mizing the objective function is equivalent to per-
forming the following two operations simultane-
ously, including maximizing the expectation of
log-likelihood of the complete data set at the ¢
timestamp and minimizing the differences be-
tween posterior distributions of pairwise data
points in M,. Thus, the clustering quality can be
guaranteed by using the model of GMM to fit the
current data points. Moreover, using the infor-
mation of cluster labels from the previous cluste-
ring results, the clustering results between adja-

cent timestamps can be smoothened.
3.5 Model parameter fitting

The objective function of EGMM is a com-
bined optimization function. Its maximization can
be iteratively solved using the framework of ex-
pectation maximization (EM) algorithm. Similar
to the standard EM algorithm, the posterior
probability of x,; generated from the kth Gaussian
component, denoted as p,,(k | x,,;,0%), will be
calculated according to the Eq. (17) in the E step.
In the M step, Eq. (16) will be maximized, and
the two goals, including maximizing the expecta-
tion of log-likelihood and minimizing the differ-
ence of posterior distributions, will be performed

simultaneously.

Tl or (X0 ‘ 0D
K
Do w05
an
To maximize Eq. (16) in the M step, it needs

Pk ‘ X, .07) =



No. 4 Yu Yuecheng, et al. Parameter Optimization Method for Gaussian Mixture Model--- 401

to take the partial derivative of the combined
function with respect to each parameter, and set
it to be zero, then the iterative equations used to
estimate the parameters can be obtained. The e-
quations from Eq. (18) to Eq. (20) are the corre-

sponding updating equations of .., u,., and X, ,

of EGMM, where r,., denotes the prior probabili-
ty of data point generated from the kth Gaussian
component at the ¢ timestamp, pu,, the sample

mean, and X, , the covariance matrix.

Tk —

1 " S 8
20 ek | Xt B (18)

Zl,-lzlx"fp’*k(k ‘ xm,@f.k) 7& Z(X“’.X/.J)GJV/ (xz,i 7x1.]) (P,;(k ‘ x/.i’a}q.lc) 7pz.k(k | x/.j7€}q.}s))

Rew = » n
DO ek x00 2 D0 bk | X080
(19)
n ( t. (k xt.iﬁgf. ) — I-z(k X, 961;' )) (Sz Lk _St.i. )
5 D bk | X008 y (XMX[ZJJ)GMI P | D) = P (k| X 05 Jok k
Lok T n o n
D ek | X050 2 D0 bk | X050
(20)

where S,.,0 = (x.; — )" (xs —wix)s S =
(x =) " ey — ).
The following is the description of EGMM
algorithm
Input Input data set X, and the expected

number of clusters, denoted as K,, at the ¢ times-

K/71

tamp; data set {C,—, ’k/}k':1 from X, e with the

same cluster labels at the 1—1 timestamp and the

corresponding parameter set {m_1xs M1y

K . .
X, 1.}, _} s regularization parameter A.

Outpt Output parameter set @, = {m,.,» His >

X, 8., and the value of objective function de-
scribed by Eq. (16).

Method

(1) Initialization: In the Oth iteration step, if

K,.1 > K,, randomly select K, parameters from
K e

{mi1ws Werws> X t,Z) as the initial parame-
K .

50) _ { 0) 0) (O)} t lf

ter set, namely 6 Tk sk s 20 1,y s

.. 0 0 0 0K
K, <<K,. initialize ;" = {z{} -ui% X% } .-, by

k=1

performing k-means algorithm.

(2) To loop iteration until convergence:

(a) E step: In the [th iteration step, using
the current parameter set @” = {x{} ,ui’ . X" }f‘zl
, calculate the posterior probability p, (& | x,;,

) of each data point;

(b) M step: Sequentially update the parame-
ter set @V ={x [V w0 B
Eqgs. (18—20) to prepare the (/[+1)th step;

(¢) If the convergence criteria are not met,

according to

go to (a); otherwise, terminate the loop.

To estimate the parameters of EGMM, the
algorithm is performed by way of clustering evo-
lutionary data, which is similar to the parameter
estimation method of GMM. The difference be-
tween GMM and EGMM is that the previous
clustering result is used to adjust the parameter
estimation of EGMM. It is inspired from con-
strained clustering. However, it should be noted
that constraint information used in EGMM comes
from the previous clustering result rather than
user provision.

In the E step, the same method is adopted by
EGMM and EM algorithms to solve log-likelihood
expectation. Hence, they have the same time
complexity, namely O (nK,D*), where n is the
number of data points, K, the number of Gaussi-
an components of GMM, and D the dimension of
data points. Because EGMM algorithm needs the
previous clustering results to smoothen the esti-
mation of current parameters, the corresponding
time complexities to estimate each parameter in
each step are O(nK,), O((n+ |X,o0 |) K,) and
O((n+ | X,om DK,D), respectively.

4 Experimental Analysis

4.1 Datasets and measure criteria

To verify the effectiveness of EGMM algo-
rithm, synthetic data sets and real data set,
named the Columbia University Image Library
(COIL), are adopted in this paper. For synthetic

data set, the data are two-dimensional ones gen-
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erated from GMM. According to the evolutionary
timestamps, the data sets are generated individu-
ally and contain 15 timestamps altogether. Fur-
thermore, the data set at different timestamps
will vary in the size and data distribution. In addi-
tion, some noise data points are added. The data-
set of COIL contains 1 044 objects and each object
is an image described by a 1 024-dimentional vec-
tor. During the process of the experiment, these
objects are randomly divided into five subsets and
each subset contains a number of objects of the
previous timestamp.

The evolutionary clustering result is a time-
varying sequence of clusters. At each timestamp,
the clustering result needs to satisfy the two cri-
teria; clustering quality and temporal smooth-
ness. In this paper, clustering accuracy is adopted
to assess the clustering quality. To evaluate the
temporal smoothness of the clustering sequence,

the fluctuation of history cost is compared.
4.2 Synthetic datasets

As shown in Table 1, the clustering accuracy
of three algorithms including EM, evolutionary k-

means and EGMM are compared, which are per-

formed on synthetic datasets at six timestamps,
respectively. The data sets with noise data are
generated from GMM, therefore the EM algo-
rithm has the higher and more stable clustering
accuracy. For this special synthetic datasets, its
clustering accuracy is even higher than the cluste-
ring of evolutionary k-means. The foundation of
evolutionary k-means is k-means algorithm, so
satisfactory clustering results are difficult to be
obtained for non-spherical datasets by running ev-
olutionary k-means. From the stability of cluste-
ring results, a greater fluctuation often arises for
the impact of noise data. As the evolutionary
clustering version of EM algorithm, EGMM is
still suitable for handing non-spherical datasets.
By using the previous clustering results to adjust
the parameters estimations, EGMM has the bet-
ter performance to deal with the evolving data-
sets. Hence, the clustering quality is more stable
than the other two algorithms and the algorithm
is less sensitive to noise data. The results running
on synthetic data sets show that the clustering re-

sults tend to be stable within a short time.

Table 1 Comparison of clustering accuracy on synthetic datasets (Acc)

Timestamp T, T, T T, T Ts
EM 0.83+5%  0.87+5% 0.88+5%  0.8445%  0.85E5%  0.84+5%
Evolutionary k-means 0.67+5%  0.75+£5%  0.834+5%  0.85%£5%  0.80%+5% 0.82£5%
EGMM 0.83+5%  0.91+5%  0.90£5%  0.914+5%  0.92£5%  0.91+5%

The history cost of EGMM at each time-
stamp is demonstrated in Fig. 1. The results run-
ning on synthetic datasets show that the history
cost fluctuates within a short range, which means
the clustering sequence of EGMM has better per-

formance of temporal smoothness.
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Fig.1 History cost of EGMM on synthetic datasets

4.3 Real datasets

To further validate the performance of
EGMM, the dataset of COIL is divided into five
subsets, then an evolutionary dataset that may
drift at five timestamps is successfully construc-
ted. It should be noted that all subsets at each
timestamp contain a number of same or different
samples to simulate the evolution scenario better.
In Table 2, the clustering quality of three algo-
rithms including EM algorithm, evolutionary k-
means and EGMM algorithm, is demonstrated,
where the three algorithms are performed on the
dataset of COIL at five timestamps. Compared
with EM algorithm, the clustering results of
EGMM better reflect the evolutionary features of
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Table 2 Comparison of clustering accuracy on COIL dataset (Acc)

Timestamp T, T, T T, T
EM 0.58+5% 0.64+5% 0.61+5% 0.634+5% 0.6645%
Evolutionary k-means 0.534+5% 0.624+5% 0.594+5% 0.64+5% 0.61+5%
EGMM 0.58+5% 0.674+5% 0.714+5% 0.734+5% 0.724+5%

data points by introducing historic clustering re-
sults; and compared with the evolutionary k-
means, EGMM can better fit the data features.
The experimental results show that the evolution-
ary clustering framework of EGMM can obtain
better clustering quality and realize the better da-
ta fitting in a short time.

In EGMM model, A is an adaptive parameter
used to adjust the confidence of a priori. That is
to say, different values of A reflect different de-
grees of effects coming from the previous cluste-
ring results during the process of parameter esti-
mation. In this paper, we adopt the approach by
dynamically and adaptively selecting A. Experi-
ments show that several factors can affect the val-
ue of A, including the discrepancy between two
distributions, the size of datasets and the number

of joint data points at adjacent timestamps.

5 Conclusions

EGMM based on constraint consistency is
proposed, which is closely related to the two
technologies, i. e. , the constrained clustering and
the evolutionary clustering. The basic idea comes
from the constrained clustering, and the optimi-
zation method of model parameter needs to per-
form evolutionary clustering. From the feature of
dataset, data points will evolve along time; and
from the obtained clustering results, a clustering
sequence with temporal smoothness must be
guaranteed. The method thus belongs to evolu-
tionary clustering. To guarantee the clustering
quality at each timestamp and the temporal
smoothness of clustering sequence, the previous
clustering results are used as a priori constraints
to adjust the parameter estimation and the assign-
ment of data points. From this perspective, the
method belongs to constrained clustering.

Compared with the existing constrained clus-

tering algorithm, the a priori constraints come

from the previous clustering results rather than
the labeled data points. These a priori constraints
can be obtained in a more natural way, and can
reflect the internal structure of the data more
truely. As the evolutionary algorithm, the algo-
rithm of EGMM uses the overall differences and
individual differences simultaneously to smoothen
clustering results. Therefore the fluctuation of
history cost becomes more stable.

As many other existing approaches, EGMM
still has some limitations. For example, the
adaptive parameter A is used to adjust the confi-
dence of a priori, therefore, how to set it clearly
according to previous clustering results is an in-
teresting topic. To evolutionary clustering, the
number of clusters may be changed with the evo-
lution of data distributions, and then how to de-
termine the number of Gaussian components be-
comes another interesting topic. Moreover, the
method of EGMM can be used to handle various
evolving data which evolves along time. Now, we
are engaged in the analysis of air passenger behav-

ior, which gradually evolves with region and age.
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