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Abstract;: The selection pressure of genetic algorithm reveals the degree of balance between the global exploration
and local optimization. A novel algorithm called the hybrid multi-population cellular genetic algorithm (HCGA) is
proposed, which combines population segmentation with particle swarm optimization (PSO). The control parame-
ters are the number of individuals in the population and the number of subpopulations. By varying these control pa-
rameters, changes in selection pressure can be investigated. Population division is found to reduce the selection
pressure. In particular, low selection pressure emerges in small and highly divided populations. Besides, slight or
mild selection pressure reduces the convergence speed, and thus a new mutation operator accelerates the system.
HPCGA is tested in the optimization of four typical functions and the results are compared with those of the con-
ventional cellular genetic algorithm. HPCGA is found to significantly improve global convergence rate, conver-
gence speed and stability. Population diversity is also investigated by HPCGA. Appropriate numbers of subpopula-
tions not only achieve a better tradeoff between global exploration and local exploitation, but also greatly improve
the optimization performance of HPCGA. It is concluded that HPCGA can elucidate the scientific basis for selec-
ting the efficient numbers of subpopulations.
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type of decentralized GA in which each individual

Intelligent algorithms proposed in recent
years are grounded in various biological phenome-
na and laws. These intelligent algorithms are
widely used to solve optimization problems in sci-
ence and engineering. In practice, however, these
optimization problems by themselves are inade-
quate for solving complex problems, and the re-
sults are often deficient. Therefore hybrid algo-
rithms, which combine the desirable features of
different algorithms, have attracted much inter-
est.

The cellular genetic algorithm (CGA) is a

is fixed in a tutorial grid, usually of dimension 2,
regardless of parallel execution. Genetic operators
are applied locally to the neighborhood of each in-
dividual, which enables slow diffusion of favora-
ble individuals. While CGA encourages diversity
in the population, it can delay the convergence
speed of the algorithm. The CGA exhibits higher
global exportation ability than GA, but converges
more slowly.

Particle swarm optimization (PSO), an opti-
mized algorithm based on swarm intelligence,
simulates the social behavior of cooperative

groups such as ants, fishes and birds. The swarm
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develops a collective intelligence that facilitates its
search for a global optimum. Desirable features
of the PSO algorithm are simple rules, few pa-
rameters and rapid convergence speed. However,
global search ability of the algorithm is poor.
The evolutionary rules of cellular automata
have been extensively documented "*. An exten-
sion of cellular automata, namely, genetic algo-
rithms with evolutionary rules can improve popu-
lation diversity. Li, et al® analyzed the conver-
gence rate of canonical CGA using absorbing-state
Markov chain. Many widely-used neighbor struc-
tures have been analyzed and researched in detail
L+6] Spatial states with a cell having four differ-
ent types of neighbors were simulated and the
effects of each neighbor were analyzed . Some
algorithms introduced disastrous events into
CGA™' and proposed a hierarchical CGA, while
a hybrid CGA/distribution estimation algorithm
was proposed in Ref. [11]. Hybrid algorithms
combining GA with local searching proved effec-
tive in solving multi-objective optimization prob-

'#13  From the above citations, it is appar-

lems"
ent that improving the local search ability and
convergence speed of CGA was neglected.

The GA is based on the tradeoff between
global exploration and local exploitation, which
reflects selection pressure. Refs. [14-16] investi-
gated the selection pressure of CGA on neighbor-
hood structure, breeding strategies and selecting
operation. The selection pressure imposed by
CGA with disaster on size and period of disasters
is also investigated ™). Selection pressure was
found to be lower following a large disaster, and
to occur over a shorter time period. Ref. [ 18]
proposed a new adaptive algorithm that aims to
dynamically control the exploration/exploitation
trade-off, based on three-dimensional CGAs. Ac-
cording to their results, selection pressure varied
if certain parameters were varied. This finding
provides valuable insights into the tradeoff be-
tween global exploration and local exploitation.

Recognizing that PSO possesses strong local
searching ability, this paper proposes a hybrid
multipopulation cellular genetic algorithm (HC-

GA) that combines GA with PSO. The perform-

ance of the algorithm is evaluated on four typical
test functions. Selection pressure and population
diversity are assessed by varying the population
size and the number of subpopulations. We dem-
onstrate the superiority of HCGA in terms of
global convergence rate and convergence speed.
The algorithm operates most effectively when the

number of subpopulation is n=2"(m=3).

2  Description of Cellular Genetic Al-
gorithm and Particle Swarm Opti-
mization

2.1 Cellular genetic algorithm description

In CGAs, individuals are placed on a toroidal
d-dimensional grid (the algorithm is usually im-
plemented in two dimensions). Each occupied
grid element (or cell) contains a single individual.
Genetic reproduction and crossover can occur only
between an individual and its nearest neighbors

(see Fig. 1).
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Fig. 1 Structure of a neighborhood

We adopt the CGA presented in Ref. [2]. In
the CGA, individuals are randomly classified as
“active” or “inactive” (see Fig. 2). Under an
evaluative rule, all individuals simultaneously
change state. An “active” cell is the one that can

interact with its neighborhood to select and cross-

over.
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Fig. 2 Distribution of individuals in CGA
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The pseudo-code of the CGA algorithm is
provided below :

Step 1 To classify an individual as living or
dead on the L XL grid at random.

Step 2 To set the stop condition.

Step 3 To calculate fitness of individuals.

Step 4 To select the living individual and
obtain its neighborhood as parents.

Step 5 To implement parents’ recombina-
tion.

Step 6 To evaluate fitness and replace exist-
ing individual if fitness is improved.

Step 7 To implement individual mutation.

Step 8 To update states synchronously ac-
cording to evolution rule.

Step 9 When the stop condition is satisfied,
end.

In the above algorithm, the current popula-
tion is replaced after synchronously applying

crossover and mutation to all individuals.
2.2 Particle swarm optimization description

The PSO searches a global optimum by sim-
ulating movement and interaction of swarming
particles. A population of particles is initialized
with random position and velocities. The position
of a particle corresponds to one possible solution
of the problem. The objective value of each parti-
cle is computed by an objective function. In the
next iteration, the position and velocity of each
particle is updated through tracking its own expe-

rience and that of other particles.

3  Hybrid Multipopulation Cellular
Genetic Algorithm

3.1 Population division and immigration of indi-

viduals

Population diversity can be maintained by di-
viding the population into several equally-propor-
tioned subpopulations that do not depend on each
other. Each subpopulation evolves independent-
ly, i. e. , genetic operations cannot occur between
subpopulations.

Population division usually causes isolated

islands that cannot interact with other islands. To

enable information exchange between subpopula-
tions, one or a few reproductive individuals in a
subpopulation are allowed to immigrate to anoth-
er island according to the immigration rate when
the interval generation AT meets a specified val-

ue. Here in this paper, AT is 20.
3.2 Construction of new operations

The existing CGA imposes random muta-
tions that are irrelevant to past and present indi-
vidual states, thereby ignoring the distance be-
tween each individual and the fittest individual.
Furthermore, excessively high mutation rates
will destroy favorable genes, while low rates will
reduce the search speed. Very low rates will stag-
nate the evolutionary process. In addition, since
mutation is directional, the probability of low fit-
ness will be increased.

In this study, mutation in CGA (Step 7) is
replaced by a new operation based on neighboring
structures in PSO. Following the operation, the
individual in the next iteration is calculated as

Xir) — T + Vitr+D (D
where ¢ is the generation, n the population size, i
the position order of the individual in the cell
space, and x; the gene of the ith individual. The
population is denoted as Q, = { &y, s X5 » " s Xy
Tt (1<i<<n) , and w;,. 1, is calculated as
Vipy =W * vy t oy oy e (1?&2‘5”’ — )+
cr ooy s (™ — 2 (2)
where w is the inertia coefficient, x!v the fit-
test gene acquired by an individual, and z})ger
the fittest neighboring gene identified by the indi-
vidual. 7, and 7, are the uniformly distributed
random numbers in the interval [0,1]. ¢ ¢, are
the cognitive and social learning factors, respec-
tively. v, is the mutating velocity at generation ¢,
calculated as

v, = [ D0 @R G — 2l (e — 1) ] /e (3)

k=2
Since Eq. (2) uses amplitude and directional

information to forecast mutation of an individual,
it improves the local searching ability, and elimi-
nates the indiscriminate mutating operations that

occur in CGA.
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4 Computational Experiments
4.1 Test problems

The algorithm is evaluated on four test func-

tions, as summarized below:

(1) F, Schaffer's f6 function
Faay) =0.5— (siny/x" + " )" — 0.5

140.001(2" + y*)*

—10 <l 2,y << 10 4)
Eq. (4) has a single maximum at 1. This
global optimum is surrounded by a few local opti-
ma, including one at 0. 990 284 and another at
0.962 776. Implemented on F,, most algorithms
easily reach a local optimum from which they can-
not escape.
(2) F,
sin(v/(x— 50)” + (y— 50)” +2.718 28)

(x—50)* 4+ (y—50)* +2.718 28
0l x,y << 100 5

One of its local

Needle function

flx,y) = +1

Function F, is similar to F,.
maxima (at 1. 128 4) is extremely close to the
global maximum (at 1. 151 1). Most algorithms
reach the local optimum at 1. 128 4.

(3) F,

< . ! .
Griewank's function

=1 OOOEI — Hcos(f) +1

— 600 < x;, < 600 (6)
This paper adopts 30 — d. Function Fy,

f(fl s Ly 9tt" 91'71

which is a multimodal function with a single glob-
al optimum surrounded by many nearby local op-
tima.

(4) F, Sphere function

Ex,, 100 <

i=1

x; < 100

.f(~Tl s XLp 9" s X

7
F, is a unimodal function with a minimum of
0 at (0, 0, *-, 0).

F;. High-dimensional versions of this function

Its dimension is the same as

are more difficult to solve because of the strong

constraints between variables.
4.2 Parameter setting

The parameters are as follows: number of
runs is 100, cellular space size 20 X 20, popula-
tion size 400, crossing rate 0. 8, mutation 0. 05.
In HCGA, learning factors ¢, and ¢, are both set

to be 2. Immigration rate is 0. 2 and the inertial

weight is 1.

S Experimental Results
5.1 Analysis of selection pressure

To some extent, selection pressure repre-
sents the balance between exploration and exploi-

tation. Selection pressure is measured by the

31, defined as the required time for

takeover time
a single (best) individual to occupy the entire
population using the selection operator only, and
ignoring crossovers and mutation. The shorter
the takeover time, the higher the selection pres-
sure.

Fig. 3 plots the proportion of the best indi-
vidual in the population as a function of time in
CGA. Fig. 4 is an equivalent plot generated by
HCGA, but varying the subpopulation number

and population size.
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Fig. 3 Growth curve of the best individual (CGA)

In Fig. 3. the curve gradually ascends to 1
When the pro-

portion of the best individual reaches 1, informa-

and remains constant thereafter.

tion of the best individual cannot be spread. Then
the selection pressure demonstrates the saturated
condition.

The curve of Fig. 4 similarly ascends but less
smoothly. The proportion of the best individuals
firstly gradually ascends to 1/n before 10 genera-
tions, then stays stable for a period of time and
goes up after 20 generations. Furthermore., the
similar curve jump can be observed in the later
evolution,such as 40 generations. The jumps are
observed when AT = 20. The phenomenon is

caused by individual migration strategy, which
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Fig. 4 Growth curve of the best individual (HCGA)

provides potential for the best individual informa-
tion in a subpopulation exchanging into other sub-
populations. Information is thus disseminated be-
tween subpopulations. In this way, a fit individu-
al can spread its genes into other subpopulations,
and thereby spread more widely. But when the
proportion of the best individuals is 1, the best
individual cannot spread.

Varying subpopulation numbers The popula-
tion size is retained at 20 X 20 and the subpopu-
lation number is set to 2, 4, 8 and 16. The resul-
ting selection pressure is displayed in Fig. 4 (a).
In Fig. 4(a), the proportion of best individuals in
the population increases more slowly when more
subpopulations exist. Namely, the proportion of
fittest individuals decreases as subpopulation
number increases; equivalently, the selection
pressure decreases as the number of subpopula-
tions increases.

Varying population size Retaining the sub-

population number at 8, the population size is set
to 200, 400, 800 and 1 600, respectively. The re-
sults are plotted in Fig. 4(b). From Fig. 4(b),
we observe that selection pressure decreases as
population size increases, up to the 10th genera-
tion. Between generations 10 and 20, it is rela-
tively constant, because the fittest individual is
not spread until the conditions favor migration.
Beyond the 20th generation, selection pressure
again increases with population size.

The above analysis reveals that by segmen-
ting the population, HCGA reduces the selection
pressure relative to CGA, and improves the glob-

al convergence of the algorithm.
5.2 Performance of HCGA and CGA
HCGA is compared with CGA with respect

to global convergence rate (P), average conver-
gence generation (G), average run time (1), and
the average and standard deviation (STD) of the
best value.

The results implemented on F,—F, are
shown in Table 1. The global convergence of HC-
GA on F, and F, is 100% and the algorithm never
becomes trapped in local optima. The conver-
gence generation of HCGA is lower than CGA
and the algorithm converges more quickly. Espe-
cially on F,, CGA converges to the global opti-
mum in only 17% of trials, and its convergence
speed is three times slower than that of HCGA.
On F;, CGA never converges to the global opti-
mum, while HCGA converges in 100% of trials.
On F,, although both algorithms converge 100 %
of the time, the convergence speed of HCGA far
exceeds that of CGA. The convergence rate of
HCGA is attributed to the population segmenta-
tion and individual migration, which reduces se-
lection pressure, slows down information dissem-
ination and avoids premature convergence. Move-
over, the new operation is directional, and the

convergence speed is thus improved.

5.3 Performance under varying population seg-

ment number

The number of subpopulations is an impor-
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tant parameter in HCGA. This section compares
the algorithm performance for different subpopu-
lations n, where n=2"(m=1,2,3,4). Popula-
tion size is retained constant at 400. The other
parameters are as specified in Section 4. 2.

Table 2 compares the global convergence rate
(P), average convergence generation (G), aver-
age run time (¢), and average and the standard
deviation (STD) of the best value.

The larger the number of subpopulations,

the lower the selection pressure (see Fig. 4).

Hence, on each of the four test functions, the
global convergence rate increases as the number
of subpopulations increases. Initially, the spend-
ing time decreases as the number of subpopula-
tions increases and later increases, except on F.
When the number of subpopulations is too large,
the selection pressure will be too low. It is unfa-
vorable for information dissemination, which can
reduce the performance of HPCGA. The STD of
the fittest individual is also improved as subpopu-

lation increases, and later decreases.

Table 1 Comparison of performance in terms of HCGA and CGA
Function Fy F, F, F,
P/% CGA 85 17 0 100
(Accuracy<C10™") HCGA 100 100 100 100
. CGA 148.3 4 075.1 6 835.2
“ HCGA 134.7 1465.7 2 606.8 2 068.3
. CGA 7.809 2 265.0744 137.125 2
I/s HCGA 7.8557 74.362 2 95.590 7 45.406 2
CGA 0.999 356 03 1.135 146 71 0. 049 831 54 5.476 9E—05
Average value
HCGA 0.999 945 86 1.151 040 78 5.760 6E—05 5.476 6E—05
CGA 5.257 6E—06 1.070 2ZE—04 2.553 3E—04 6.890 OE—09
STD HCGA 6.548 4E—10 7.888 8E—10 7.412 1E—10 6.743 9E—10
Table 2 Comparisons of performance of different numbers with sub-population
P/% ) Average
Function m G T/s STD
(Accuracy<<10~") value

1 93 115.5 5.565 0 0.999 759 65 1. 833 1E—06
F, 2 98 124.0 5.949 7 0.999 828 58 9.740 8E—07
3 100 134.7 7.8557 0.999 945 86 6.548 4E—10
4 100 162. 4 10.053 0 0.999 943 78 9.071 7TE—10
1 73 1459.6 163.114 0 1.144 919 70 1.012 SE—04
2 89 1562.9 123.486 6 1. 148 544 79 5.367 2ZE—08
F 3 100 1465.7 74.362 2 1.151 040 78 7.412 1E—10
4 100 1466.7 81.173 5 1. 151 040 49 7.998 4dE—10
1 66 6 435.3 226.709 4 0.001 966 32 3.951 9E—05
F, 2 98 3455.7 128.186 7 8.995 SE—05 5.367 2E—08
3 100 2 606.8  95.590 7 5.760 6E—05 7.412 1E—10
4 100 2859.3 111.166 4 5.777 TE—05 7.998 4E—10
1 82 5482.3 113.144 6 8.102 2ZE—05 3.274 SE—09
2 100 2 543.0  51.900 6 6.041 8E—05 8.063 TE—10
F 3 100 2 068.3  45.406 2 5.476 6E—05 6.743 9E—10
4 100 2 052.8  47.987 4 5.534 5SE—05 7.296 8E—10

5.4 Diversity performance

Population diversity is crucial in evolutionary
algorithms. Only in a diverse population can the

algorithm seek a global optimum. Therefore,

maintaining population diversity is guaranteed to
improve algorithm performance. This section in-
vestigates changes in diversity over time, while

varying the number of subpopulations. Diversity
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is measured as the ratio of population entropy to
the maximum of population entropy™™.

The CGA and HCGA algorithms are imple-
mented 100 times on F, and F,. Figs. 5, 6 plot
the evolution of diversity calculated by CGA and
HCGA, respectively, for the four population seg-
mentation numbers. The population diversity
drops dramatically with the increasing generation
in CGA. On F, and F,, population diversity is
very low at generations 500 and 1 000, respective-
ly. However, in HCGA, the population diversity
declines slowly and maintains high over a long pe-
riod. Most importantly, population diversity is
strengthened as subpopulation number increases,
up to m=3. When m=3 and 4, the algorithm can
keep population diversity better than that of the
case with m=1 or 2.

— CGA
HCGA (number 2)
HCGA (number 4)

HCGA (number 6)
HCGA (number 8)

)
5~
@»
=
o
=
a

Generation

Fig.5 Diversity change of F; on HCGA with different

subpopulation numbers

—CGA
HCGA (number 2)
HCGA (number 4)
HCGA (number 8)
HCGA (number 16)

Diversity

Generation / 10°

Fig. 6 Diversity change of F, on HCGA with different

subpopulation numbers

6 Conclusions

The HCGA is proposed, in which GA is
combined with a new operation inspired by PSO.
The new operation replaces mutation in standard
CGA., and enables population segmentation and
genetic migration. By enhancing population diver-
HCGA

achieves a favorable global exploration/local ex-

sity and reducing selection pressure,

ploitation balance. It improves not only the con-
vergence rate and speed of conventional CGA, but
also its stability. This paper also investigates the
effect of subpopulation number on HCGA per-
formance. The algorithm performs most effec-
tively at a critical number of subpopulations. The
result demonstrates that HGCA performance can
be optimized by selecting an appropriate number
of subpopulations. On each of the four test func-
tions, the algorithm performance is optimized at
the population segmentation number of 8 (m =

3.
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