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Abstract: The solution of normal least squares support vector regression (LSSVR) is lack of sparseness, which
limits the real-time and hampers the wide applications to a certain degree. To overcome this obstacle, a scheme,
named I* FSA-LSSVR, is proposed. Compared with the previously approximate algorithms., it not only adopts the
partial reduction strategy but considers the influence between the previously selected support vectors and the will-
selected support vector during the process of computing the supporting weights. As a result, *FSA-LSSVR re-
duces the number of support vectors and enhances the real-time. To confirm the feasibility and effectiveness of the

proposed algorithm, experiments on benchmark data sets are conducted, whose results support the presented
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I"FSA-LSSVR.
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1 Introduction

Since Suykens, et alt" proposed least squares
support vector machine (LSSVM), it has drawn
much attention and obtained wide applications in
many fields due to its high computational efficien-

ey, However, sparseness and robustness are

two obvious weaknesses of LSSVM! . The lack
of robustness is caused by the squared loss func-
tion used by LSSVM, while the equality con-
straints bring the loss of sparseness. The former
can be alleviated using the weighted strategy, and
the latter is realized with the pruning methods to
a certain extent. As opposed to the lack of ro-
bustness, realizing sparseness seems more emer-
gent, because it involves the real-time problem in
many efforts were

the testing phase. Hence,
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made to circumvent this drawback. A simple ap-

6] was proposed to realize sparseness by

proach
sorting the support valve spectrum, i. e., dele-
ting the smallest absolute values of supporting
weights. In the following, Ref. [7] presented a
more sophisticated pruning mechanism that omits
the training samples bearing the least errors after
deleted, and, furthermore, this algorithm was
accelerated™. Based on sequential minimal opti-
mization, another pruning algorithm was pro-
posed to realize the sparse solution of LSSVM!,
Recently, these pruning algorithms have been ac-
celerated using the iterative methodology™®. Ac-
cording to sequential forward greedy manner,
Ref. [11] proposed a fast sparse approximation
scheme for LSSVM, named as fast sparse ap-

proximated LSSVM (FSA-LSSVM). In the re-
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gression domain, it is called as fast sparse ap-
proximated least squares support vector regres-
sion (FSA-LSSVR). For LSSVM, there are not
non-support vectors, i. e. , every training sample
is a support vector and makes contribution to the
objective function. However, when FSA-LSSVR
prunes the training samples, the complete reduc-
tion is adopted. That is to say, the pruned sam-
ples are totally discarded. Aiming at this inappro-
priate action, an improved FSA-LSSVR (IFSA-
LSSVR) was proposed’, i e., during the
process of updating the kernel matrix iteratively,
the partial reduction strategy is adopted. Howev-
er, there still exists certain limitation. In other
words, the supporting weights of previously se-
lected support vectors are fixed while selecting a
new support vector, which means the influence
between the previously selected support vectors
and the will-selected support vector is not consid-
ered. Therefore, on the basis of IFSA-LSSVR, a
further improved scheme, viz. the improved IF-
SA-LSSVR ( I’FSA-LSSVR ), is proposed.
I*FSA-LSSVR not only adopts the partial reduc-
tion strategy but also considers the influence be-
tween the previously selected support vectors and

the will-selected support vector.

2 Least Squares Support Vector

Regression

Given the training samples set {(x;,d;)} X,
of the size N, where x; € R" and d; € R, LSS-

VRM™ was given as'

1 Cx
min{—wiw-+ 5 > e (1
wibye 2 2 i—1

s. t. d;:WTgD(xj)+[)+€;vizly"'vN

where w can control the model complexity. b is

the bias, e= [e,,**,ey |’ represents the training
errors, C the regularization parameter, eC*) the
feature map realizing the transformation from the
finite-dimensional input space to the high-dimen-
sional feature space. To solve Eq. (1), the La-
grangian function is constructed.
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where &= [a;,***say ] is the Lagrange multiplier
vector. According to the dual theorem, the opti-

mality conditions are
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Plugging the variables w and e into Eq. (2),
its Wolfe dual problem is
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Transform the constrained problem Eq. (4)

N

into the unconstrained equation
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an identity matrix of appropriate dimension, and

where K = K + d = [d, ""’dN]T’ K; =

k(e ,+) the kernel function implicitly compu-
ting the inner product of two vectors in the fea-
ture space. It is very easy to obtain the optimal

solution of Eq. (5) as follows

b 0 1™717'T0
= _ (6)
a 1 K d
When Eq. (6) is solved, for a new input sam-

ple x, its target can be predicted by the following

regression machine

N
FO=wo)+b=Dlakx x)+b (D
i=1

where @ and b are from Eq. (6). From Eq. (7), it
is easily understood that the solution of LSSVR is
not sparse, i. e. , every training sample is support
vector, which hampers its use in those practical
applications demanding extremely fast responses.

That is to say, the real-time of LSSVR is limited.
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To realize the sparseness and enhance the real-
time of LSSVR, in the following, the algorithm
I’FSA-LSSVR is proposed.

3 TI’FSA-LSSVR

A method of realizing sparseness for LSS-
VR, named the PFSA-LSSVR, is described. It is
a greedy algorithm, which iteratively builds the
regression machine by adding one training sample
from the training set at one time. I*FSA-LSSVR
consists of two important parts, viz. the selection
of so-called support vector and the solution of
subproblem. Starting with an empty index set
P=¢ and a full index set Q = {1,2,-*,N},
IFSA-LSSVR first selects a new support vector
from the training set {(x;,d;) ,i€ Q} according to
some criterion. Then, the index s is removed
from Q and added to P. After determining the
training sample to be included, I*FSA-LSSVR
solves the subproblem containing the new support
vector and all previously picked support vectors.
This procedure is repeated until a certain stopping
criterion is satisfied.

If the sample x, is selected as the support
vector at the (n+ 1) th iteration, the inverse ma-

trix in Eq. (6) becomes as

O 11“1)‘ 1 !
12”Jrl — I\P\ Rpp ];,\ (8)
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sents the cardinality, and P; the ith element of

repre-

the index set P. Given that
O 1T —1
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1,py Kopp
The following updating equation can be
[13]

found via Sherman-Morrion formula

i [X0 Hmm 1 ao
0" o0 —1

1 _
where B=R, {k jl, A= (k,—[1 k']p)"'. From

Eq. (10), 6 and e can be obtained for constructing
the regression machine. However, as we know,
there are not non-support vectors for LSSVR,

that is, each training sample is a support vector.

In other words, each sample makes contribution
to the cost function in Eq. (1). Different from the
complete reduction strategy in Ref. [11], where
the updating Eq. (10) is used, Ref. [12] adopts
the partial reduction strategy. Accordingly, the

following updating equation is considered.
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where O= {1,2,:-,N} is a full index set. Plug-
ging Eq. (11) into Eq. (6) yields the following
equation
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From Eq. (15), we obtain the following regres-

sion machine.

FO=Dlak (xix)+b (16)
er

From Egs. (12, 13), it is not difficult to
know that during the process of finding a; G € P)
and b, the contribution of the training samples in-
dexed by Q is considered as well. As a result, the
selected support vectors are reduced obviously,
which means that the real-time of the improved
algorithm, IFSA-LLSSVR, is enhanced. Up to
now, there have been two significant problems to
solve, namely, the criterion of selecting support
vector and the stopping criterion. In what fol-

lows, we will give them.
Regarding the criterion of selecting support
vectors, a natural idea that the sample making
the most contribution to the cost function of

Eq. (1) is chosen as the support vector, arises.
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Substituting Eq. (6) into Eq. (5) gives rise to the

following equation

e aT]{O} )
- 2 I dP

The deviation of Eq. (17) caused by choosing the
training sample x, as the support vector is
~ 2
Afzwzw-wk(,r[?}a) (as)
2 dp

The larger the AL is, the most important the
sample x,. During each iteration, the sample cau-
sing the largest deviation will be chosen as the
support vector. From Eq. (18), the criterion of
choosing support vector is obtained.

s=arg min{Ai, :L(ﬁT {9 }&,) 2} (19)

i€Q 2 dp

As opposed to the criterion in Refs. [11,12] ,
here the criterion not only adopts the partial re-
duction strategy but also considers the influence
between the previously selected support vectors
and the will-selected support vector. Therefore,
during the process of calculating the cost function
at the (n+1)th iteration, the updated weights is
adopted instead of the fixed weights, i. e., the
weights at the nth iteration.

As for the stopping criterion, the pre-defined
number of support vectors M can be utilized to
control the sparseness, thus satisfying our re-
quirement of real-time. Of course, similar to
Refs.[11] and [12] , according to the prediction

errors, the stopping criterion is obtained as well

max(|ry|) <e (20)
7611‘ n=20
where r T S kG ax ) B —d, =006
jeP

a pre-chosen positive small number which can
control the number of support vectors. The larger
the ¢ is, the fewer the support vectors. When ¢
approaches zero, I’FSA-LSSVR goes to the nor-
mal LSSVR. As an extreme, when e=0, I’FSA-
LSSVR is completely equivalent to the normal
LLSSVR. In summary, the flowchart of realizing
I’ FSA-LSSVR is depicted as follows;

(1) To initialize @ =0", b =0, O=Q=

{1.--.N}. P=.0= >)d;» n=0;
i=1

(2) If Q= or max(
find the index s according to Eq. (19);

ry | ) <<e, stop; else

N 0 177
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_ ) and |- L= R |_ |; else
1 lo] Ku‘ al d,

compute R, @« "' and B from
Egs. (11,15);
(4 P=PU{s}. Q=Q/{s};

(5) To calculate ry ' = Kgrah' ' +6"" —dqg.,

n+1 Tl
P s Ay s

n=n-+1, and go to step (2).

4 Experimental Results

To show the effectiveness and feasibility of
the proposed I*FSA-LSSVR, 11 experiments on
benchmark data sets (available from http://
www. liaad. up. pt/~ ltorgo/Regression/ or
http://archive. ics. uci. edu/ml/), i. e., stock,
winequality - red, winequality white, bank8FM,
bank32NH, puma8NH, puma32H, cpu small,
cpu_act, total UPDRS, and motor UPDRS, are
completed on an processor of Intel (R) Core™ i7
950 with 4 GB RAM using MATLAB R2007a

complier under a Windows XP operation system.

The Gaussian kernel function £ (x;,x;) =
i Py
exp T is chosen to construct

IFSA-LSSVR. As for the choice of kernel pa-
rameter ¥ and the regularization parameter C,
they are determined using the cross-validation
method™ from the pairs {27%,--,2'} X
(271, 0,200y,

are normalized in the range of [0, 1], but there

For each data set, the input data

are no normalizations on target values. The de-
tailed specifications about these data sets are lis-
ted in Table 1. To compare conveniently, two
performance indexes, the root mean squared er-
rors (RMSE) and the normalized mean square er-
ror (NMSE), are defined, respectively, in the

following

RMSE = 21)
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Table 1 Experimental results on benchmark data sets

Data set Algorithm RMSE NMSE trTime/s teTime/s #SV  trNum teNum
Normal LSSVR 7. 374E—01 1.294E—02 0.41 0.45 600 600 350
stock FSA-LSSVR 7.473E—01 1. 329E—02 0. 37 0.16 220 600 350
(C=2°, y=27%) IFSA-LSSVR 7.487TE—01 1. 335E—02 0.37 0.14 190 600 350
FFSA-LLSSVR  7.402E—01 1.304E—02 105. 99 0.11 150 600 350
Normal LSSVR 6. 184E—01 5.876E—01 1. 14 1. 22 1 000 1 000 599
winequality - red FSA-LSSVR 6.243E—01 5.987E—01 0. 20 0.09 75 1 000 599
(C=2%, y=2Y IFSA-LSSVR 6. 248E—01 5.998E—01 0.05 0.03 15 1 000 599
FPFSA-LSSVR  6.261E—01 6.023E—01 10. 83 0.02 S 1 000 599
Normal LSSVR 7. 119E—01 6.477TE—01 15. 27 10. 00 3 500 3 500 1 398
winequality_ white ~ FSA-LSSVR 7.259E—01 6.734E—01 11.03 1.68 590 3 500 1398
(C=2%, y=2Y IFSA-LSSVR 7.246E—01 6.710E—01 1. 22 0. 34 120 3 500 1398
IPFSA-LSSVR  7.259E—01 6.735E—01 927.49 0.09 35 3 500 1 398
Normal LSSVR 3. 248E—02 4.517E—02 26.13 33.87 4 500 4 500 3692
bank8FM FSA-LSSVR 3.307E—02 4. 684E—02 10. 94 3.70 495 4 500 3692
(C=2", y=2% IFSA-LSSVR 3.300E—02 4. 664E—02 2.79 1.34 180 4500 3692
’FSA-LSSVR  3.313E—02 4. 700E—02 4 217. 38 0.73 95 4 500 3692
Normal LSSVR 8.167E—02 4. 359E—01 28.42 37.49 4 500 4 500 3 692
bank32NH FSA-LSSVR 8.330E—02 4.535E—01 58.95 10. 42 1270 4 500 3692
(C=2%, y=2Y IFSA-LSSVR 8.328E—02 4.533E—01 15. 05 3.76 455 4 500 3692
FPFSA-LSSVR  8.325E—02 4,.530E—01 3337.11 0.58 70 4 500 3 692
Normal LSSVR 3.303 3.485E—01 26.21 33.77 4 500 4 500 3692
puma8NH FSA-LSSVR 3.369 3.626E—01 80. 09 11.75 1510 4 500 3 692
(C=2", y=271H IFSA-LSSVR 3. 369 3.626E—01 46. 32 6.13 810 4 500 3692
I*FSA-LSSVR 3.368 3.623E—01 8 937.42 1. 50 200 4 500 3692
Normal LSSVR 2. 675E—02 7.478E—01 28.52 37.69 4 500 4 500 3692
puma32H FSA-LSSVR 2.721E—02 7.738E—01 73.73 11.76 1420 4 500 3692
(C=2", y=2Y IFSA-LSSVR 2.722E—02 7.743E-01 0. 44 0.28 35 4 500 3 692
PPFSA-LSSVR  2.723E—02 7.749E—01 716. 34 0.12 15 4 500 3692
Normal LSSVR 3.081 2.7T14E—02 32.90 32.95 5 000 5 000 3192
cpu_small FSA-LSSVR 3.139 2.817E—02 16.72 3.99 600 5 000 3192
(C=2", y=2"1H IFSA-LSSVR 3. 141 2.820E—02 2.59 1. 01 155 5 000 3192
FPFSA-LSSVR 3.116 2.776E—02 4 413.89 0.51 80 5 000 3192
Normal LSSVR 3.220 3.295E—02 34.41 34.27 5 000 5 000 3192
cpu-— act FSA-LSSVR 3.190 3.223E—02 3.28 1. 37 200 5 000 3192
(C=2%, y=2% IFSA-LSSVR 3.211 3.264E—02 1. 87 0. 81 120 5 000 3192
I?FSA-LSSVR 3.284 3.416E—02 2 237.85 0.27 40 5 000 3192
Normal LSSVR 9.115 7.466E—01 11. 31 18. 39 3 000 3 000 2 875
total - UPDRS FSA-LSSVR 9.255 7.696E—01 3.81 2.04 330 3 000 2 875
(C=2", y=2"1H IFSA-LSSVR 9. 283 7.742E—01 1.31 0. 84 140 3 000 2 875
PFSA-LSSVR 9.223 7.643E—01 708. 96 0. 20 35 3 000 2 875
Normal LSSVR 6.958 7.528E—01 11.48 18. 21 3 000 3 000 2 875
motor— UPDRS FSA-LSSVR 7.079 7.791E—01 4.76 2.29 380 3 000 2 875
(C=2%, y=271) IFSA-LSSVR 7.071 7.775E—01 0.41 0.31 50 3 000 2 875
*FSA-LSSVR 7.057 7.745E—01 702. 80 0. 20 35 3 000 2 875
NMSE — 21 z\) d, —d,)° (92) mean of the measured value, d; is the prediction
AN = value, and d; the measured value.
where A? = ﬁz\z (d. —d)? with d being the The detailed experimental results are shown

= in Table 1, where trTime and teTime represent



418 Transactions of Nanjing University of Aeronautics and Astronautics

the training time and the testing time, respective-
ly; and #SV, trNum, teNum denote the number
of support vectors, the number of training sam-
ples, and the number of testing samples, respec-
tively. From Table 1, I*FSA-LSSVR needs the
least number of support vectors when all the algo-
rithms reach the almost same prediction accura-
cy. Hence, when they come to the almost same
generalization performance, the real-time of
IFFSA-LSSVR is the best. Compared with the
FSA-LLSSVR, the solution of IFSA-LSSVR is
much sparser. The main reason is that when IF-
SA-LSSVR computes the supporting weights, the
partial reduction strategy is applied. On the basis
of IFSA-LSSVR, I’FSA-LSSVR considers the in-
fluence between the previously selected support
vectors and the will-selected support vector when
calculating the supporting weights. Consequent-
ly, PFSA-LLSSVR obtains the best real-time per-
formance, that is, the sparsest solution. As for
this point, the columns of teTime and # SV can
answer it. However, I’FSA-LSSVR needs the
most training time. During each iteration, the
updating computational complexity of FSA-LSS-
VR is max {O(|P|?), O(|P Ql)}. After
improvement, the computational cost of ITFSA-
LSSVR increases to O (N - P‘). Since IFSA-
LLSSVR needs fewer iterations compared to FSA-

LSSVR, the total cost of adding up all the itera-
tions for IFSA-LSSVR becomes less, which is
supported by the training time in Table 1. At
each iteration, I’FSA-LSSVR needs the largest
Q Pl). Al

though it needs the fewest support vectors, the

computational burden O (N

total burden becomes the largest. The training
time in Table 1 may address it. Fortunately,
these algorithms are all offline, i.e. , the compu-
tational burden in the training phase can be fin-
ished affordably in an offline model, which can
not affect the real-time performance in the testing
phase. All in all, FFSA-LSSVR needs the least
number of support vectors and realizes the spar-
sest solution of LSSVR, thus enhancing the real-

time.

5 Conclusions

Since the solution of normal LSSVR lacks
the sparseness, which limits the real-time in the
testing phase and hampers the wide applications
to a certain degree, a fast sparse approximation
scheme, FSA-LLSSVR., was proposed. However,
during the process of computing the supporting
weights, FSA-LSSVR adopts the complete reduc-
tion strategy. To overcome this drawback, an
improved scheme, IFSA-LLSSVR, was presented,
which takes the partial reduction strategy to cal-
culate the supporting weights in each iteration.
However, for IFSA-LSSVR there also exists lim-
itation in calculating supporting weights because
it does not consider the influence between the pre-
viously selected support vectors and the will-se-
lected support vector. Hence, I’ FSA-LSSVR cir-
cumvents this problem and obtains the much
sparser solution. Besides, it further enhances the
real-time performance of LSSVR. To confirm the
feasibility and effectiveness of the proposed
IFSA-LSSVR, a lot of experiments on bench-
mark data sets are conducted, whose results favor
it.
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