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Abstract: A conformal Runge-Kutta multi-resolution time-domain (C-RKMRTD) method is present and applied to

model and analyze curved objects. Compared with the non-conformal method, the proposed method is more accu-

rate. The scattering analyses of the cylinder and ellipsoid are presented to validate the proposed method. The nu-

merical results demonstrate that the proposed scheme perform better than the MRTD method and other higher or-

der methods with a higher accuracy.
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1 Introduction

The finite-difference time-domain (FDTD)
method has been widely used in the field of com-
putational electromagnetics due to its simple im-
plementation and a capability to address complex
targetst. It is known that the FDTD method has
two primary drawbacks. One is that the numeri-
cal dispersion is the dominate limitation to the ac-
curacy of the FDTD method. The other is that it
is not able to accurately model curved surfaces
and material discontinuities by using the stair-cas-
ing approach with structured grids. In the past
decades, numerous efforts have been made to im-
prove the traditional FDTD method such as the
high-order methods. The multi-resolution time-
domain (MRTD) method has been proposed to
improve numerical dispersion properties?®). The
Runge-Kutta multi-resolution time-domain (RK-
MRTD) has been proposed by Cao'”® to improve
the dispersion and convergence in both time and

spatial domains. However, these methods also
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have shortcomings to deal with curved objects.
The conformal FDTD technique is one of candi-
dates to circumvent this problem. Nowadays.,
more attentions are focused on how to modeling
curved FDTD
(CFDTD) method was proposed by Dey, et al™

to accurately model the curved metallic objects,

objects.  Locally conformal

and it is more accurate than the FDTD method.
Stefan, et al™™ proposed a new conformal perfect
electric conductor (PEC) algorithm, of the FDTD
method, which only needed to change two field-
updated coefficients. It could privilege either
speed or accuracy when choosing a time step re-
duction. Some other papers investigated how to
accurately model curved dielectric objects using
the CFDTD method"'"**.,

However, few papers discuss the conformal
RK-MRTD (C-RKMRTD) method to deal with
the curved dielectric objects. In this paper, the C-
RKMRTD method is derived and presented. Be-
sides, numerical examples are also given to verify

the proposed method!".
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2 C-RKMRTD Method

2.1 RK-MRTD method

For simplicity (¢ = 0) and without loss of
generality, in three-dimensional (3D) one of the
RK-MRTD'/ update equations can be written as
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where m is the spatial stencil size. Parameters e,
At, Ax, Ay, and Az are the permittivity, tempo-
ral step size, and spatial step sizes along x-, y
and z-directions, respectively. The coefficients
a(wv) is the same as defined in Ref. [7].

2.2 C-RKMRTD method

In order to derive the general update equa-
tions of the C-RKMRTD method with the spatial
step size Ar=Ay = Az, Eq. (1) can be rewritten
in another form as
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From Ref.[13], we know that Ea(v)(Z’v*

v=1

1) =1, Eq. (2) can be decomposed into (20—1)

sub-equations as follows
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are the permittivities corresponding to the cell
size Ax, 3Ax, *-

where coefficients e (v) (v = 1, 2, -,

, and (2v—1)Ax, respectively.
It is clear that for a given Ax, Egs. (4,5) can
thus be treated as the intervals 3Ax and (2v—1)
Ax in the FDTD update equations. The multi-re-
gion decomposition of electric field E is shown in

Fig. 1.

H,
Fig. 1 FE field multi-region decomposition for conformal

high-order FDTD method

Adding Egs. (2—5), the update equation of
the C-RKMRTD method is expressed as
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From Eq. (6), it is easy to see that the up-
date equation of C-RKMRTD method is constitu-
ted by (29 —1) normal FDTD method with cell
co, 2uv—DAx.
Comparing Eqs. (1) and (6), it is clearly

found that the effective dielectric constant ¢ is
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The weighting area is used to obtain e(v) as
_ S S,
e(v)—sl+sz €l+51+57 € (8

Three different conditions for the objects interface

are shown in Fig. 2.

3 Numerical Experiments

The numerical simulations are presented to

validate the C-RKMRTD method. The two simu-
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Fig. 2 Different conditions for curved object interface

lations both take 10 cells per wavelength. The
number of Courant, Friedrichs, Lewy (CFL) is
0. 3, and an eight-layer of anistropic perfectly
matched layer (APML) is used to truncate the
computational domain. All computational simula-
tions are based on a computer of Pentium with a
dual-core 2. 8 GHz CPU and 1. 87 G memory.

3.1 Dielectric cylinder

The dielectric cylinder with a radius of
0.06 m, height of 0. 015 m, the relative permit-
tivity e, of 4, and relative permeability p, of 1. 0.

The cylinder is illuminated by an incident plane
wave coming from the z-direction with a polariza-
tion in the x-direction at 10 GHz. The total com-
putational volume is discretized into 82 X 82 X 82
cells. The bistatic radar cross sections (RCSs) in
E-plane obtained from different methods, i. e. ,
method of moments (MoM), MRTD and C-RK-
MRTD, are shown in Fig. 3, where 8 is the inci-
dent angle. The C-RKMRTD method agrees with
the MoM method better than the MRTD method.
Table 1 lists the magnitudes of the spatial discret-
ization, temporal discretization, total computa-
tional domain, total time steps and CPU time.
Fig. 4 shows the difference between the C-RKM-
RTD/MRTD and the MoM method.

RCS/dB

30 60 9 120 150 180
6/()

Fig. 3 Bistatic RCS in E-plane of the dielectric cylinder

obtained by different methods

Table 1 Comparison for different methods

Method MRTD C-RKMRTD
Ax 0.003 0.003
At 3 3
Cell 82X 82X82 82X 82X82
Total time 2 000 2 000
CPU time /s 1645.43 3 989.53

~ ~ L A

20 40 60 80 100 120 140 160 180
0/(°)

Fig. 4 Difference between C-RKMRTD (MRTD) and
MoM method



No. 4 Zhu Min, et al. Runge-Kutta Multi-resolution Time-Domain Method for Modeling--+ 443

3.2 Dielectric ellipsoid

The structure of dielectric ellipsoid with the
radii of 0.6, 0.6 and 0.3 m in the x-, y-, 2~ di-
rections, respectively. The relative permittivity
e, is 4, the relative permeability 4, is 1, the polar-
ization of the electric field is in the x-direction,
and the wavelength is 0. 3 m.

Backward scattering bistatic RCSs obtained
by different methods are shown in Figs. 5,6. It is
found that the results of C-RKMRTD method is
consistent with those of the MoM method and its
performance is better than that of the non-confor-
mal methods. The comparisons of the computa-
tional cost of different methods are displayed in
Table 2 . Fig. 7 shows the difference between C-
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Dielectric RCS in E-plane of the ellipsoid ob-

tained by different methods

Fig.
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Fig. 6 Bistatic RCS in H-plane of the dielectric ellipsoid

using different methods

Table 2 Comparison for different methods

Method MRTD C-RKMRTD
Ax 0.03 0.03
At 30 30
Cell 118X 118X 92 118 X118 X92
Total time 2 000 2 000
CPU time /s 4 125,37 8 046.79
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Fig. 7  Difference between C-RKMRTD/MRTD and

MoM method

RKMRTD/MRTD and the MoM methods. Fig. 8
shows the between C-RKMRTD/
FDTD and the MoM method.

difference
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Fig. 8 Difference between FDTD/C-RKMRTD and the

MoM method

4 Conclusion

An efficient approach that combines the con-
formal technique and RK-MRTD method is im-
plemented to model the curved objects for the
scattering problems. Numerical results demon-
strate the higher accuracy and efficiency of the
proposed method, compared with non-conformal
methods including the MRTD and FDTD meth-

ods.
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